SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Daugherty Ana M.) "

Sökning: WFRF:(Daugherty Ana M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wisse, Laura E.M., et al. (författare)
  • Hippocampal subfield volumetry from structural isotropic 1 mm3 MRI scans : A note of caution
  • 2021
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 42:2, s. 539-550
  • Tidskriftsartikel (refereegranskat)abstract
    • Spurred by availability of automatic segmentation software, in vivo MRI investigations of human hippocampal subfield volumes have proliferated in the recent years. However, a majority of these studies apply automatic segmentation to MRI scans with approximately 1 × 1 × 1 mm3 resolution, a resolution at which the internal structure of the hippocampus can rarely be visualized. Many of these studies have reported contradictory and often neurobiologically surprising results pertaining to the involvement of hippocampal subfields in normal brain function, aging, and disease. In this commentary, we first outline our concerns regarding the utility and validity of subfield segmentation on 1 × 1 × 1 mm3 MRI for volumetric studies, regardless of how images are segmented (i.e., manually or automatically). This image resolution is generally insufficient for visualizing the internal structure of the hippocampus, particularly the stratum radiatum lacunosum moleculare, which is crucial for valid and reliable subfield segmentation. Second, we discuss the fact that automatic methods that are employed most frequently to obtain hippocampal subfield volumes from 1 × 1 × 1 mm3 MRI have not been validated against manual segmentation on such images. For these reasons, we caution against using volumetric measurements of hippocampal subfields obtained from 1 × 1 × 1 mm3 images.
  •  
2.
  • Wuestefeld, Anika, et al. (författare)
  • Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.
  •  
3.
  • Wuestefeld, Anika, et al. (författare)
  • Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories
  • Ingår i: Hippocampus. - 1050-9631.
  • Tidskriftsartikel (refereegranskat)abstract
    • The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 μm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 μm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.
  •  
4.
  • Persson, Ninni, et al. (författare)
  • Regional brain shrinkage and change in cognitive performance over two years : The bidirectional influences of the brain and cognitive reserve factors
  • 2016
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 126, s. 15-26
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined relationships between regional brain shrinkage and changes in cognitive performance, while taking into account the influence of age, vascular risk, Apolipoprotein E variant and socioeconomic status. Regional brain volumes and cognitive performance were assessed in 167 healthy adults (age 19-79 at baseline), 90 of whom returned for the follow-up after two years. Brain volumes were measured in six regions of interest (ROIs): lateral prefrontal cortex (LPFC), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), cerebellar hemispheres (CbH), and primary visual cortex (VC), and cognitive performance was evaluated in three domains: episodic memory (EM), fluid intelligence (Gf), and vocabulary (V). Average volume loss was observed in Hc, PhG and CbH, but reliable individual differences were noted in all examined ROIs. Average positive change was observed in EM and V performance but not in Gf scores, yet only the last evidenced individual differences in change. We observed reciprocal influences among neuroanatomical and cognitive variables. Larger brain volumes at baseline predicted greater individual gains in Gf, but differences in LPFC volume change were in part explained by baseline level of cognitive performance. In one region (PFw), individual change in volume was coupled with change in Gf. Larger initial brain volumes did not predict slower shrinkage. The results underscore the complex role of brain maintenance and cognitive reserve in adult development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (3)
annan publikation (1)
Typ av innehåll
refereegranskat (3)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Daugherty, Ana M. (4)
Wang, Lei (3)
Berron, David (3)
Wisse, Laura E.M. (3)
de Flores, Robin (3)
Olsen, Rosanna K. (3)
visa fler...
Bakker, Arnold (3)
Adams, Jenna N. (2)
La Joie, Renaud (2)
Baumeister, Hannah (2)
Wuestefeld, Anika (2)
Irwin, David J (2)
Lee, Edward B (2)
Ding, Song Lin (2)
Ittyerah, Ranjit (2)
Schuck, Theresa (2)
Augustinack, Jean C (2)
Insausti, Ricardo (2)
Yushkevich, Paul (2)
Raz, Naftali (2)
Lim, Sydney (2)
Trotman, Winifred (2)
López, Mónica Muñoz (2)
Amunts, Katrin (2)
Mazloum-Farzaghi, Ne ... (2)
Puliyadi, Vyash (2)
Tran, Tammy T (2)
Canada, Kelsey L (2)
Dalton, Marshall A (2)
Chételat, Gaël (1)
Yushkevich, Paul A. (1)
Yuan, Peng (1)
De La Rosa-Prieto, C ... (1)
Ghisletta, Paolo (1)
Artacho-Pérula, Emil ... (1)
Persson, Ninni (1)
Dahle, Cheryl L. (1)
Bender, Andrew R. (1)
Yang, Yiqin (1)
Bedard, Madigan L. (1)
de Onzoño Martin, Ma ... (1)
del Mar Arroyo Jimén ... (1)
del Pilar Marcos Rab ... (1)
Chung, Eunice (1)
Mueller, Susanne G. (1)
Stark, Craig E.L. (1)
Carr, Valerie A. (1)
Joie, Renaud La (1)
Hodgetts, Carl (1)
Bedard, Madigan (1)
visa färre...
Lärosäte
Lunds universitet (3)
Stockholms universitet (1)
Karolinska Institutet (1)
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (3)
Naturvetenskap (1)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy