SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Daughton W.) "

Search: WFRF:(Daughton W.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nakamura, T. K. M., et al. (author)
  • Mass and Energy Transfer Across the Earth's Magnetopause Caused by Vortex-Induced Reconnection
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 122:11, s. 11505-11522
  • Journal article (peer-reviewed)abstract
    • When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a preexisting boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfven speed and allows the Kelvin-Helmholtz (KH) instability to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a preexisting boundary layer and the magnetosheath during strong northward IMF. Initial results of this simulation have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the nonlinearly developed KH vortex, which are quantitatively consistent with MMS observations. We further quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event, (i) mass enters a new mixing layer formed by the VIR more efficiently from the preexisting boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. The quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.
  •  
2.
  • Phan, T. D., et al. (author)
  • MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line
  • 2016
  • In: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 6060-6069
  • Journal article (peer-reviewed)abstract
    • We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was similar to 10 km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3 mu A/m(2)) electron currents, a super-Alfvenic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line.
  •  
3.
  • Torbert, R. B., et al. (author)
  • Estimates of terms in Ohm's law during an encounter with an electron diffusion region
  • 2016
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 43:12, s. 5918-5925
  • Journal article (peer-reviewed)abstract
    • We present measurements from the Magnetospheric Multiscale (MMS) mission taken during a reconnection event on the dayside magnetopause which includes a passage through an electron diffusion region (EDR). The four MMS satellites were separated by about 10 km such that estimates of gradients and divergences allow a reasonable estimate of terms in the generalized Ohm's law, which is key to investigating the energy dissipation during reconnection. The strength and character of dissipation mechanisms determines how magnetic energy is released. We show that both electron pressure gradients and electron inertial effects are important, but not the only participants in reconnection near EDRs, since there are residuals of a few mV/m (similar to 30-50%) of E + U-e x B (from the sum of these two terms) during the encounters. These results are compared to a simulation, which exhibits many of the observed features, but where relatively little residual is present.
  •  
4.
  • Huang, S. Y., et al. (author)
  • In situ observations of flux rope at the separatrix region of magnetic reconnection
  • 2016
  • In: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing. - 2169-9380 .- 2169-9402. ; 121:1, s. 205-213
  • Journal article (peer-reviewed)abstract
    • We present the first in situ observations of a small-scale flux rope locally formed at the separatrix region of magnetic reconnection without large guide field. Bidirectional electron beams (cold and hot beams) and density cavity accompanied by intense wave activity substantiate the crossing of the separatrix region. Density compression and one parallel electron beam are detected inside the flux rope. We suggest that this flux rope is locally generated at the separatrix region due to the tearing instability within the separatrix current layer. This observation sheds new light on the 3-D picture of magnetic reconnection in space plasma.
  •  
5.
  • Nakamura, T. K. M., et al. (author)
  • Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas
  • 2017
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvenic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft. Here, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin-Helmholtz instability.
  •  
6.
  • Schroeder, J. M., et al. (author)
  • 2D Reconstruction of Magnetotail Electron Diffusion Region Measured by MMS
  • 2022
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:19
  • Journal article (peer-reviewed)abstract
    • Models for collisionless magnetic reconnection in near-Earth space are distinctly characterized as 2D or 3D. In 2D kinetic models, the frozen-in law for the electron fluid is usually broken by laminar dynamics involving structures set by the electron orbit size, while in 3D models the width of the electron diffusion region is broadened by turbulent effects. We present an analysis of in situ spacecraft observations from the Earth's magnetotail of a fortuitous encounter with an active reconnection region, mapping the observations onto a 2D spatial domain. While the event likely was perturbed by low-frequency 3D dynamics, the structure of the electron diffusion region remains consistent with results from a 2D kinetic simulation. As such, the event represents a unique validation of 2D kinetic, and laminar reconnection models.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view