SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De La Rue Du Can Stephane) "

Sökning: WFRF:(De La Rue Du Can Stephane)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haites, Erik, et al. (författare)
  • Contribution of carbon pricing to meeting a mid-century net zero target
  • 2024
  • Ingår i: Climate Policy. - : Informa UK Limited. - 1469-3062 .- 1752-7457.
  • Tidskriftsartikel (refereegranskat)abstract
    • A mid-century net zero target creates a challenge for reducing the emissions of emissions-intensive, trade-exposed sectors with high cost mitigation options. These sectors include aluminium, cement, chemicals, iron and steel, lime, pulp and paper and petroleum refining. Available studies agree that decarbonization of these sectors is possible by mid-century if more ambitious policies are implemented soon. Existing carbon pricing policies have had limited impact on the emissions of these sectors because their marginal abatement costs almost always exceed the tax rate or allowance price. But emissions trading systems with free allowance allocations to emissions-intensive, trade-exposed sectors have minimized the adverse economic impacts and associated leakage. Internationally coordinated policies are unlikely, so implementing more ambitious policies creates a risk of leakage. This paper presents policy packages a country can implement to accelerate emission reduction by these sectors with minimal risk of leakage. To comply with international trade law the policy packages differ for producers whose goods compete with imports in the domestic market and producers whose goods are exported. Carbon pricing is a critical component of each package due its ability to minimize the risk of adverse economic impacts on domestic industry, support innovation and generate revenue. The revenue can be used to assist groups adversely impacted by the domestic price and production changes due to carbon pricing and to build public support for the policies. Key policy insights A country with a mid-century net zero GHG emission target likely will need to implement more ambitious mitigation policies soon for emission-intensive sectors such as aluminium, cement, chemicals, iron and steel, lime, pulp and paper and petroleum refining. More ambitious mitigation policies are likely to vary by country and be implemented at different times, creating a risk of leakage due to industrial production shifts to other jurisdictions. More ambitious mitigation policy packages, compatible with international trade law, that a country can implement to reduce emissions from these sectors with minimal risk of leakage are available but differ for producers whose goods compete with imports in the domestic market and those whose goods are exported. Carbon pricing is a critical component of each package due its ability to minimize the risk of adverse economic impacts on domestic producers, support innovation and generate revenue.
  •  
2.
  • Nilsson, Lars J., et al. (författare)
  • A European industrial development policy for prosperity and zero emissions
  • 2020
  • Ingår i: ECEEE Industrial Summer Study : Decarbonise Industry! 2020 - Proceedings - Decarbonise Industry! 2020 - Proceedings. - 2001-7979 .- 2001-7987. - 9789198387865 ; 2020-September, s. 457-466
  • Konferensbidrag (refereegranskat)abstract
    • The objective of this paper is to outline and discuss the key elements of an EU industrial development policy consistent with the Paris Agreement. We also assess the current EU Industrial Strategy proposal against these elements. The “well below 2 °C” target sets a clear limit for future global greenhouse gas emissions and thus strict boundaries for the development of future material demand, industrial processes and the sourcing of feedstock; industry must evolve to zero emissions or pay for expensive negative emissions elsewhere. An industrial policy for transformation to net-zero emissions must include attention to directed technological and economic structural change, the demand for emissions intensive products and services, energy and material efficiency, circular economy, electrification and other net-zero fuel switching, and carbon capture and use or storage (CCUS). It may also entail geographical relocation of key basic materials industries to regions endowed with renewable energy. In this paper we review recent trends in green industrial policy. We find that it has generally focused on promoting new green technologies (e.g., PVs, batteries, fuel cells and biorefineries) rather than on decarbonizing the emissions intensive basic materials industries, or strategies for handling the phase-out or repurposing of sunset industries (e.g., replacing fossil fuel feedstocks for chemicals). Based on knowledge about industry and potential mitigation options, and insights from economics, governance and innovation studies, we propose a framework for the purpose of developing and evaluating industrial policy for net-zero emissions. This framework recognizes the need for: directionality; innovation; creating lead markets for green materials and reshaping existing markets; building capacity for governance and change; coherence with the international climate policy regime; and finally the need for a just transition. We find the announced EU Industrial Strategy to be strong on most elements, but weak on transition governance approaches, the need for capacity building, and creating lead markets.
  •  
3.
  • Nilsson, Lars J, et al. (författare)
  • An industrial policy framework for transforming energy and emissions intensive industries towards zero emissions
  • 2021
  • Ingår i: Climate Policy. - : Informa UK Limited. - 1469-3062 .- 1752-7457. ; 21:8, s. 1053-1065
  • Tidskriftsartikel (refereegranskat)abstract
    • The target of zero emissions sets a new standard for industry and industrial policy. Industrial policy in the twenty-first century must aim to achieve zero emissions in the energy and emissions intensive industries. Sectors such as steel, cement, and chemicals have so far largely been sheltered from the effects of climate policy. A major shift is needed, from contemporary industrial policy that mainly protects industry to policy strategies that transform the industry. For this purpose, we draw on a wide range of literatures including engineering, economics, policy, governance, and innovation studies to propose a comprehensive industrial policy framework. The policy framework relies on six pillars: directionality, knowledge creation and innovation, creating and reshaping markets, building capacity for governance and change, international coherence, and sensitivity to socio-economic implications of phase-outs. Complementary solutions relying on technological, organizational, and behavioural change must be pursued in parallel and throughout whole value chains. Current policy is limited to supporting mainly some options, e.g. energy efficiency and recycling, with some regions also adopting carbon pricing, although most often exempting the energy and emissions intensive industries. An extended range of options, such as demand management, materials efficiency, and electrification, must also be pursued to reach zero emissions. New policy research and evaluation approaches are needed to support and assess progress as these industries have hitherto largely been overlooked in domestic climate policy as well as international negotiations. Key policy insights Energy and emission intensive industries can no longer be complacent about the necessity of zero greenhouse gas (GHG) emissions. Zero emissions require profound technology and organizational changes across whole material value chains, from primary production to reduced demand, recycling and end-of-life of metals, cement, plastics, and other materials. New climate and industrial policies are necessary to transform basic materials industries, which are so far relatively sheltered from climate mitigation. It is important to complement technology R&D with the reshaping of markets and strengthened governance capacities in this emerging policy domain. Industrial transformation can be expected to take centre stage in future international climate policy and negotiations.
  •  
4.
  • Saunders, Harry D., et al. (författare)
  • Energy Efficiency : What Has Research Delivered in the Last 40 Years?
  • 2021
  • Ingår i: Annual Review of Environment and Resources. - : Annual Reviews. - 1543-5938 .- 1545-2050. ; 46, s. 135-165
  • Forskningsöversikt (refereegranskat)abstract
    • This article presents a critical assessment of 40 years of research that may be brought under the umbrella of energy efficiency, spanning different aggregations and domains-from individual producing and consuming agents to economy-wide effects to the role of innovation to the influence of policy. After 40 years of research, energy efficiency initiatives are generally perceived as highly effective. Innovation has contributed to lowering energy technology costs and increasing energy productivity. Energy efficiency programs in many cases have reduced energy use per unit of economic output and have been associated with net improvements in welfare, emission reductions, or both. Rebound effects at the macro level still warrant careful policy attention, as they may be nontrivial. Complexity of energy efficiency dynamics calls for further methodological and empirical advances, multidisciplinary approaches, and granular data at the service level for research in this field to be of greatest societal benefit.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy