SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Meulder B.) "

Sökning: WFRF:(De Meulder B.)

  • Resultat 1-26 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Mikus, MS, et al. (författare)
  • Plasma proteins elevated in severe asthma despite oral steroid use and unrelated to Type-2 inflammation
  • 2022
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 59:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Asthma phenotyping requires novel biomarker discovery.ObjectivesTo identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs).MethodsAn antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED.ResultsIn U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-β and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation.ConclusionsThe plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Takahashi, K, et al. (författare)
  • Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis
  • 2018
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 51:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes.The U-BIOPRED cohort of severe asthma patients, containing current-smokers (CSA), ex-smokers (ESA), nonsmokers and healthy nonsmokers was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed.Colony-stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants, with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene set variation analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated.Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level, with CSA patients having increased CSF2 expression and ESA patients showing sustained loss of epithelial barrier processes.
  •  
9.
  • Aarestrup, FM, et al. (författare)
  • Towards a European health research and innovation cloud (HRIC)
  • 2020
  • Ingår i: Genome medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 12:1, s. 18-
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Union (EU) initiative on the Digital Transformation of Health and Care (Digicare) aims to provide the conditions necessary for building a secure, flexible, and decentralized digital health infrastructure. Creating a European Health Research and Innovation Cloud (HRIC) within this environment should enable data sharing and analysis for health research across the EU, in compliance with data protection legislation while preserving the full trust of the participants. Such a HRIC should learn from and build on existing data infrastructures, integrate best practices, and focus on the concrete needs of the community in terms of technologies, governance, management, regulation, and ethics requirements. Here, we describe the vision and expected benefits of digital data sharing in health research activities and present a roadmap that fosters the opportunities while answering the challenges of implementing a HRIC. For this, we put forward five specific recommendations and action points to ensure that a European HRIC: i) is built on established standards and guidelines, providing cloud technologies through an open and decentralized infrastructure; ii) is developed and certified to the highest standards of interoperability and data security that can be trusted by all stakeholders; iii) is supported by a robust ethical and legal framework that is compliant with the EU General Data Protection Regulation (GDPR); iv) establishes a proper environment for the training of new generations of data and medical scientists; and v) stimulates research and innovation in transnational collaborations through public and private initiatives and partnerships funded by the EU through Horizon 2020 and Horizon Europe.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Jevnikar, Z., et al. (författare)
  • Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 143:2, s. 577-590
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. Objective: We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. Methods: An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. Results: Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1 beta, IL-8, and IL-1 beta. Conclusions: Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Wilson, SJ, et al. (författare)
  • Severe asthma exists despite suppressed tissue inflammation: findings of the U-BIOPRED study
  • 2016
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 48:5, s. 1307-1319
  • Tidskriftsartikel (refereegranskat)abstract
    • The U-BIOPRED study is a multicentre European study aimed at a better understanding of severe asthma. It included three steroid-treated adult asthma groups (severe nonsmokers (SAn group), severe current/ex-smokers (SAs/ex group) and those with mild–moderate disease (MMA group)) and healthy controls (HC group). The aim of this cross-sectional, bronchoscopy substudy was to compare bronchial immunopathology between these groups.In 158 participants, bronchial biopsies and bronchial epithelial brushings were collected for immunopathologic and transcriptomic analysis. Immunohistochemical analysis of glycol methacrylate resin-embedded biopsies showed there were more mast cells in submucosa of the HC group (33.6 mm−2) compared with both severe asthma groups (SAn: 17.4 mm−2, p<0.001; SAs/ex: 22.2 mm−2, p=0.01) and with the MMA group (21.2 mm−2, p=0.01). The number of CD4+lymphocytes was decreased in the SAs/ex group (4.7 mm−2) compared with the SAn (11.6 mm−2, p=0.002), MMA (10.1 mm−2, p=0.008) and HC (10.6 mm−2, p<0.001) groups. No other differences were observed.Affymetrix microarray analysis identified seven probe sets in the bronchial brushing samples that had a positive relationship with submucosal eosinophils. These mapped toCOX-2(cyclo-oxygenase-2),ADAM-7(disintegrin and metalloproteinase domain-containing protein 7),SLCO1A2(solute carrier organic anion transporter family member 1A2),TMEFF2(transmembrane protein with epidermal growth factor like and two follistatin like domains 2) andTRPM-1(transient receptor potential cation channel subfamily M member 1); the remaining two are unnamed.We conclude that in nonsmoking and smoking patients on currently recommended therapy, severe asthma exists despite suppressed tissue inflammation within the proximal airway wall.
  •  
19.
  • Östling, Jörgen, et al. (författare)
  • IL-17-high asthma with features of a psoriasis immunophenotype
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 144:5, s. 1198-1213
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required.Objective: We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity.Methods: Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17–high and IL-13–high asthma phenotypes.Results: Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17–high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and β-defensin.Conclusion: The IL-17–high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-17.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-26 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy