SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Degn Matilda) "

Sökning: WFRF:(Degn Matilda)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clausen, Bettina Hjelm, et al. (författare)
  • Conditional ablation of myeloid TNF increases lesion volume after experimental stroke in mice, possibly via altered ERK1/2 signaling
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia are activated following cerebral ischemia and increase their production of the neuro- and immunomodulatory cytokine tumor necrosis factor (TNF). To address the function of TNF from this cellular source in focal cerebral ischemia we used TNF conditional knock out mice (LysMcreTNF fl/fl) in which the TNF gene was deleted in cells of the myeloid lineage, including microglia. The deletion reduced secreted TNF levels in lipopolysaccharide-stimulated cultured primary microglia by ∼93%. Furthermore, phosphorylated-ERK/ERK ratios were significantly decreased in naïve LysMcreTNF fl/fl mice demonstrating altered ERK signal transduction. Micro-PET using 18 [F]-fluorodeoxyglucose immediately after focal cerebral ischemia showed increased glucose uptake in LysMcreTNF fl/fl mice, representing significant metabolic changes, that translated into increased infarct volumes at 24 hours and 5 days compared to littermates (TNFfl/fl). In naïve LysMcreTNF fl/fl mice cytokine levels were low and comparable to littermates. At 6 hours, TNF producing microglia were reduced by 56% in the ischemic cortex in LysMcreTNF fl/fl mice compared to littermate mice, whereas no TNF + leukocytes were detected. At 24 hours, pro-inflammatory cytokine (TNF, IL-1β, IL-6, IL-5 and CXCL1) levels were significantly lower in LysMcreTNF fl/fl mice, despite comparable infiltrating leukocyte populations. Our results identify microglial TNF as beneficial and neuroprotective in the acute phase and as a modulator of neuroinflammation at later time points after experimental ischemia, which may contribute to regenerative recovery.
  •  
2.
  • Clausen, Bettina Hjelm, et al. (författare)
  • Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia
  • 2014
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The innate immune system contributes to the outcome after stroke, where neuroinflammation and post-stroke systemic immune depression are central features. Tumor necrosis factor (TNF), which exists in both a transmembrane (tm) and soluble (sol) form, is known to sustain complex inflammatory responses associated with stroke. We tested the effect of systemically blocking only solTNF versus blocking both tmTNF and solTNF on infarct volume, functional outcome and inflammation in focal cerebral ischemia. Methods: We used XPro1595 (a dominant-negative inhibitor of solTNF) and etanercept (which blocks both solTNF and tmTNF) to test the effect of systemic administration on infarct volume, functional recovery and inflammation after focal cerebral ischemia in mice. Functional recovery was evaluated after one, three and five days, and infarct volumes at six hours, 24 hours and five days after ischemia. Brain inflammation, liver acute phase response (APR), spleen and blood leukocyte profiles, along with plasma microvesicle analysis, were evaluated. Results: We found that both XPro1595 and etanercept significantly improved functional outcomes, altered microglial responses, and modified APR, spleen T cell and microvesicle numbers, but without affecting infarct volumes. Conclusions: Our data suggest that XPro1595 and etanercept improve functional outcome after focal cerebral ischemia by altering the peripheral immune response, changing blood and spleen cell populations and decreasing granulocyte infiltration into the brain. Blocking solTNF, using XPro1595, was just as efficient as blocking both solTNF and tmTNF using etanercept. Our findings may have implications for future treatments with anti-TNF drugs in TNF-dependent diseases.
  •  
3.
  • Madsen, Pernille M, et al. (författare)
  • Genetic ablation of soluble tumor necrosis factor with preservation of membrane tumor necrosis factor is associated with neuroprotection after focal cerebral ischemia.
  • 2015
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 1559-7016.
  • Tidskriftsartikel (refereegranskat)abstract
    • Microglia respond to focal cerebral ischemia by increasing their production of the neuromodulatory cytokine tumor necrosis factor, which exists both as membrane-anchored tumor necrosis factor and as cleaved soluble tumor necrosis factor forms. We previously demonstrated that tumor necrosis factor knockout mice display increased lesion volume after focal cerebral ischemia, suggesting that tumor necrosis factor is neuroprotective in experimental stroke. Here, we extend our studies to show that mice with intact membrane-anchored tumor necrosis factor, but no soluble tumor necrosis factor, display reduced infarct volumes at one and five days after stroke. This was associated with improved functional outcome after experimental stroke. No changes were found in the mRNA levels of tumor necrosis factor and tumor necrosis factor-related genes (TNFR1, TNFR2, TACE), pro-inflammatory cytokines (IL-1β, IL-6) or chemokines (CXCL1, CXCL10, CCL2); however, protein expression of TNF, IL-1β, IL-6 and CXCL1 was reduced in membrane-anchored tumor necrosis factor(Δ/Δ) compared to membrane-anchored tumor necrosis factor(wt/wt) mice one day after experimental stroke. This was paralleled by reduced MHCII expression and a reduction in macrophage infiltration in the ipsilateral cortex of membrane-anchored tumor necrosis factor(Δ/Δ) mice. Collectively, these findings indicate that membrane-anchored tumor necrosis factor mediates the protective effects of tumor necrosis factor signaling in experimental stroke, and therapeutic strategies specifically targeting soluble tumor necrosis factor could be beneficial in clinical stroke therapy.
  •  
4.
  • Modvig, Signe, et al. (författare)
  • High CD34 surface expression in BCP-ALL predicts poor induction therapy response and is associated with altered expression of genes related to cell migration and adhesion
  • 2022
  • Ingår i: Molecular Oncology. - : Wiley. - 1574-7891 .- 1878-0261. ; 16:10, s. 2015-2030
  • Tidskriftsartikel (refereegranskat)abstract
    • Minimal residual disease (MRD) constitutes the most important prognostic factor in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Flow cytometry is widely used in MRD assessment, yet little is known regarding the effect of different immunophenotypic subsets on outcome. In this study of 200 BCP-ALL patients, we found that a CD34-positive, CD38 dim-positive, nTdT dim-positive immunophenotype on the leukemic blasts was associated with poor induction therapy response and predicted an MRD level at the end of induction therapy (EOI) of ≥ 0.001. CD34 expression was strongly and positively associated with EOI MRD, whereas CD34-negative patients had a low relapse risk. Further, CD34 expression increased from diagnosis to relapse. CD34 is a stemness-associated cell-surface molecule, possibly involved in cell adhesion/migration or survival. Accordingly, genes associated with stemness were overrepresented among the most upregulated genes in CD34-positive leukemias, and protein–protein interaction networks showed an overrepresentation of genes associated with cell migration, cell adhesion, and negative regulation of apoptosis. The present work is the first to demonstrate a CD34-negative immunophenotype as a good prognostic factor in ALL, whereas high CD34 expression is associated with poor therapy response and an altered gene expression profile reminiscent of migrating cancer stem-like cells.
  •  
5.
  • Radziwon-Balicka, Aneta, et al. (författare)
  • A novel multicolor flow-cytometry application for quantitative detection of receptors on vascular smooth muscle cells
  • 2017
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need to develop new techniques for quantitative measurement of receptors expression on particular vasculature cells types. Here, we describe and demonstrate a novel method to measure quantitatively and simultaneously the expression of endothelin B receptor (ETB) on vascular smooth muscle cells (VSMC). We isolated cells from male rat tissues such as: brain pial, brain intraparenchymal and retina vessels. To analyze solid tissues, a single-cell suspension was prepared by a combined mechanic and enzymatic process. The cells were stained with Fixable Viability Dye, followed by fixation, permeabilization and antibodies staining. The expression of ETB receptors on VSMC was measured by flow-cytometry and visualized by fluorescence microscopy. We obtained a high percentage of viable cells 87.6% ± 1.5% pial; 84.6% ± 4.3% parenchymal and 90.6% ± 4% retina after isolation of single cells. We performed a quantitative measurement of ETB receptor expression on VSMC and we identified two subpopulations of VSMC based on their expression of smooth muscle cells marker SM22α. The results obtained from pial vessels are statistically significant (38.4% ± 4% vs 9.8% ± 3.32%) between the two subpopulations of VSMC. The results obtained from intraparenchymal and retina vessels were not statistically significant. By specific gating on two subpopulations, we were able to quantify the expression of ETB receptors. The two subpopulation expressed the same level of ETB receptor (p = 0.45; p = 0.3; p = 0.42) in pial, parenchymal and retina vessels, respectively. We applied our method to the animals after induction of subarachnoid hemorrhage (SAH). There was statistically significant expression of ETB receptor (p = 0.02) on VSMC between sham 61.4% ± 4% and SAH 77.4% ± 4% rats pial vessels. The presented technique is able to quantitatively and selectively measure the level of protein expression on VSMC. The entire technique is optimized for rat tissue; however the protocol can also be adapted for other species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy