SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delopoulos A) "

Sökning: WFRF:(Delopoulos A)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Langlet, B, et al. (författare)
  • Predicting Real-Life Eating Behaviours Using Single School Lunches in Adolescents
  • 2019
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Large portion sizes and a high eating rate are associated with high energy intake and obesity. Most individuals maintain their food intake weight (g) and eating rate (g/min) rank in relation to their peers, despite food and environmental manipulations. Single meal measures may enable identification of “large portion eaters” and “fast eaters,” finding individuals at risk of developing obesity. The aim of this study was to predict real-life food intake weight and eating rate based on one school lunch. Twenty-four high-school students with a mean (±SD) age of 16.8 yr (±0.7) and body mass index of 21.9 (±4.1) were recruited, using no exclusion criteria. Food intake weight and eating rate was first self-rated (“Less,” “Average” or “More than peers”), then objectively recorded during one school lunch (absolute weight of consumed food in grams). Afterwards, subjects recorded as many main meals (breakfasts, lunches and dinners) as possible in real-life for a period of at least two weeks, using a Bluetooth connected weight scale and a smartphone application. On average participants recorded 18.9 (7.3) meals during the study. Real-life food intake weight was 327.4 g (±110.6), which was significantly lower (p = 0.027) than the single school lunch, at 367.4 g (±167.2). When the intra-class correlation of food weight intake between the objectively recorded real-life and school lunch meals was compared, the correlation was excellent (R = 0.91). Real-life eating rate was 33.5 g/min (±14.8), which was significantly higher (p = 0.010) than the single school lunch, at 27.7 g/min (±13.3). The intra-class correlation of the recorded eating rate between real-life and school lunch meals was very large (R = 0.74). The participants’ recorded food intake weights and eating rates were divided into terciles and compared between school lunches and real-life, with moderate or higher agreement (κ = 0.75 and κ = 0.54, respectively). In contrast, almost no agreement was observed between self-rated and real-life recorded rankings of food intake weight and eating rate (κ = 0.09 and κ = 0.08, respectively). The current study provides evidence that both food intake weight and eating rates per meal vary considerably in real-life per individual. However, based on these behaviours, most students can be correctly classified in regard to their peers based on single school lunches. In contrast, self-reported food intake weight and eating rate are poor predictors of real-life measures. Finally, based on the recorded individual variability of real-life food intake weight and eating rate, it is not advised to rank individuals based on single recordings collected in real-life settings.
  •  
7.
  •  
8.
  • Tragomalou, A, et al. (författare)
  • Novel e-Health Applications for the Management of Cardiometabolic Risk Factors in Children and Adolescents in Greece
  • 2020
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity in childhood and adolescence represents a major health problem. Novel e-Health technologies have been developed in order to provide a comprehensive and personalized plan of action for the prevention and management of overweight and obesity in childhood and adolescence. We used information and communication technologies to develop a “National Registry for the Prevention and Management of Overweight and Obesity” in order to register online children and adolescents nationwide, and to guide pediatricians and general practitioners regarding the management of overweight or obese subjects. Furthermore, intelligent multi-level information systems and specialized artificial intelligence algorithms are being developed with a view to offering precision and personalized medical management to obese or overweight subjects. Moreover, the Big Data against Childhood Obesity platform records behavioral data objectively by using inertial sensors and Global Positioning System (GPS) and combines them with data of the environment, in order to assess the full contextual framework that is associated with increased body mass index (BMI). Finally, a computerized decision-support tool was developed to assist pediatric health care professionals in delivering personalized nutrition and lifestyle optimization advice to overweight or obese children and their families. These e-Health applications are expected to play an important role in the management of overweight and obesity in childhood and adolescence.
  •  
9.
  • Diou, C, et al. (författare)
  • BigO: Big Data Against Childhood Obesity
  • 2018
  • Ingår i: HORMONE RESEARCH IN PAEDIATRICS. - 1663-2818. ; 90, s. 335-336
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
10.
  • Fagerberg, P, et al. (författare)
  • Lower Energy Intake among Advanced vs. Early Parkinson's Disease Patients and Healthy Controls in a Clinical Lunch Setting: A Cross-Sectional Study
  • 2020
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Unintentional weight loss has been observed among Parkinson’s disease (PD) patients. Changes in energy intake (EI) and eating behavior, potentially caused by fine motor dysfunction and eating-related symptoms, might contribute to this. The primary aim of this study was to investigate differences in objectively measured EI between groups of healthy controls (HC), early (ESPD) and advanced stage PD patients (ASPD) during a standardized lunch in a clinical setting. The secondary aim was to identify clinical features and eating behavior abnormalities that explain EI differences. All participants (n = 23 HC, n = 20 ESPD, and n = 21 ASPD) went through clinical evaluations and were eating a standardized meal (200 g sausages, 400 g potato salad, 200 g apple purée and 500 mL water) in front of two video cameras. Participants ate freely, and the food was weighed pre- and post-meal to calculate EI (kcal). Multiple linear regression was used to explain group differences in EI. ASPD had a significantly lower EI vs. HC (−162 kcal, p < 0.05) and vs. ESPD (−203 kcal, p < 0.01) when controlling for sex. The number of spoonfuls, eating problems, dysphagia and upper extremity tremor could explain most (86%) of the lower EI vs. HC, while the first three could explain ~50% vs. ESPD. Food component intake analysis revealed significantly lower potato salad and sausage intakes among ASPD vs. both HC and ESPD, while water intake was lower vs. HC. EI is an important clinical target for PD patients with an increased risk of weight loss. Our results suggest that interventions targeting upper extremity tremor, spoonfuls, dysphagia and eating problems might be clinically useful in the prevention of unintentional weight loss in PD. Since EI was lower in ASPD, EI might be a useful marker of disease progression in PD.
  •  
11.
  •  
12.
  • Kyritsis, K, et al. (författare)
  • Assessment of real life eating difficulties in Parkinson's disease patients by measuring plate to mouth movement elongation with inertial sensors
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 1632-
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson’s disease (PD) is a neurodegenerative disorder with both motor and non-motor symptoms. Despite the progressive nature of PD, early diagnosis, tracking the disease’s natural history and measuring the drug response are factors that play a major role in determining the quality of life of the affected individual. Apart from the common motor symptoms, i.e., tremor at rest, rigidity and bradykinesia, studies suggest that PD is associated with disturbances in eating behavior and energy intake. Specifically, PD is associated with drug-induced impulsive eating disorders such as binge eating, appetite-related non-motor issues such as weight loss and/or gain as well as dysphagia—factors that correlate with difficulties in completing day-to-day eating-related tasks. In this work we introduce Plate-to-Mouth (PtM), an indicator that relates with the time spent for the hand operating the utensil to transfer a quantity of food from the plate into the mouth during the course of a meal. We propose a two-step approach towards the objective calculation of PtM. Initially, we use the 3D acceleration and orientation velocity signals from an off-the-shelf smartwatch to detect the bite moments and upwards wrist micromovements that occur during a meal session. Afterwards, we process the upwards hand micromovements that appear prior to every detected bite during the meal in order to estimate the bite’s PtM duration. Finally, we use a density-based scheme to estimate the PtM durations distribution and form the in-meal eating behavior profile of the subject. In the results section, we provide validation for every step of the process independently, as well as showcase our findings using a total of three datasets, one collected in a controlled clinical setting using standardized meals (with a total of 28 meal sessions from 7 Healthy Controls (HC) and 21 PD patients) and two collected in-the-wild under free living conditions (37 meals from 4 HC/10 PD patients and 629 meals from 3 HC/3 PD patients, respectively). Experimental results reveal an Area Under the Curve (AUC) of 0.748 for the clinical dataset and 0.775/1.000 for the in-the-wild datasets towards the classification of in-meal eating behavior profiles to the PD or HC group. This is the first work that attempts to use wearable Inertial Measurement Unit (IMU) sensor data, collected both in clinical and in-the-wild settings, towards the extraction of an objective eating behavior indicator for PD.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Papapanagiotou, V, et al. (författare)
  • Collecting big behavioral data for measuring behavior against obesity
  • 2020
  • Ingår i: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. - 2694-0604. ; 2020, s. 5296-5299
  • Tidskriftsartikel (refereegranskat)
  •  
18.
  • Sarafis, I, et al. (författare)
  • Assessment of In-Meal Eating Behaviour using Fuzzy SVM
  • 2019
  • Ingår i: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. - 2694-0604. ; 2019, s. 6939-6942
  • Tidskriftsartikel (refereegranskat)
  •  
19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy