SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deppisch R) "

Sökning: WFRF:(Deppisch R)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alimena, Juliette, et al. (författare)
  • Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
  • 2020
  • Ingår i: Journal of Physics G. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 47:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
  •  
2.
  •  
3.
  •  
4.
  • Vanholder, R, et al. (författare)
  • Uremic toxicity: present state of the art
  • 2001
  • Ingår i: The International journal of artificial organs. - : SAGE Publications. - 0391-3988 .- 1724-6040. ; 24:10, s. 695-725
  • Tidskriftsartikel (refereegranskat)abstract
    • The uremic syndrome is a complex mixture of organ dysfunctions, which is attributed to the retention of a myriad of compounds that under normal condition are excreted by the healthy kidneys (uremic toxins). In the area of identification and characterization of uremic toxins and in the knowledge of their pathophysiologic importance, major steps forward have been made during recent years. The present article is a review of several of these steps, especially in the area of information about the compounds that could play a role in the development of cardiovascular complications. It is written by those members of the Uremic Toxins Group, which has been created by the European Society for Artificial Organs (ESAO). Each of the 16 authors has written a state of the art in his/her major area of interest.
  •  
5.
  • Antel, C., et al. (författare)
  • Feebly-interacting particles : FIPs 2022 Workshop Report
  • 2023
  • Ingår i: European Physical Journal C. - : Springer. - 1434-6044 .- 1434-6052. ; 83:12
  • Forskningsöversikt (refereegranskat)abstract
    • Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs.
  •  
6.
  • Linden, T, et al. (författare)
  • 3,4-Dideoxyglucosone-3-ene (3,4-DGE): A cytotoxic glucose degradation product in fluids for peritoneal dialysis
  • 2002
  • Ingår i: Kidney International. - : Elsevier BV. - 1523-1755 .- 0085-2538. ; 62:2, s. 697-703
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Bioincompatible glucose degradation products (GDPs) in fluids for peritoneal dialysis (PD) develop during sterilization and storage. Their biological activity has successfully been monitored through the use of various in vitro methods but their molecular and chemical nature is less well understood. Many GDPs are highly reactive carbonyl compounds. Although some of the identified GDPs are extremely cytotoxic, none of them actually possess cytotoxicity at the concentrations found in PD fluids. Thus, the GDP responsible for the toxicity in PD fluids has not yet been identified. The intention of the present work was to investigate to what extent the unsaturated dicarbonyl compound, 3,4-dideoxyglucosone-3-ene (3,4-DGE) was present in PD fluids, and if it could be responsible for the in vitro effects on L-929 fibroblast cells. Methods. A commercial preparation of 3,4-DGE and two different liquid chromatography methods were used for the chemical identification and quantification. In vitro bioincompatibility was determined as inhibition of cell growth using the L-929 fibroblast cell line. Results. 3,4-DGE was present in conventionally manufactured PD fluids at a concentration of 9 to 22 mumol/L. In the newly developed PD fluid, Gambrosol trio, the concentrations were 0.3 to 0.7 mumol/L. When added as synthetic 3,4-DGE to cell growth media at the concentrations measured in conventional PD fluids, the inhibition of cell growth was significantly lower than for that seen with the conventional fluids. However, in the conventional PD fluids the total amount of 3,4-DGE available for toxic reactions most probably was higher than that measured, because 3,4-DGE was freshly recruited from a molecular pool when consumed. The speed of this recruitment was high enough to explain most of the growth inhibition seen for heat-sterilized PD fluids. Conclusion. 3,4-DGE is present in conventional PD fluids at a concentration between 9 and 22 mumol/L, and is the most biologically active of all GDPs identified to date. Thus, it is the main candidate to be held responsible for the clinical bioincompatibility caused by conventionally manufactured PD fluids.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy