SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Devin J) "

Search: WFRF:(Devin J)

  • Result 1-50 of 113
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
3.
  • Abe, H., et al. (author)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Journal article (peer-reviewed)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
4.
  • Petroff, E., et al. (author)
  • A polarized fast radio burst at low Galactic latitude
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford Academic. - 0035-8711 .- 1365-2966. ; 469:4, s. 4465-4482
  • Journal article (peer-reviewed)abstract
    • We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
  •  
5.
  • Adams, C. B., et al. (author)
  • Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes
  • 2021
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 923:2
  • Journal article (peer-reviewed)abstract
    • The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the H alpha emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 +/- 4.4 days is reported, consistent with the period of 317.3 +/- 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical H alpha parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.
  •  
6.
  • Abdalla, H., et al. (author)
  • TeV Emission of Galactic Plane Sources with HAWC and HESS
  • 2021
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 917:1
  • Journal article (peer-reviewed)abstract
    • The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.
  •  
7.
  • Abdalla, H., et al. (author)
  • HESS and MAGIC observations of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 in May 2016
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Journal article (peer-reviewed)abstract
    • The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E>100 GeV) gamma rays. The VHE gamma -ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE gamma -ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of similar to 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE gamma -ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the gamma -ray flare, even though the detailed flux evolution differs from the VHE gamma -ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE gamma -ray flare. In the high-energy (HE, E> 100 MeV) gamma -ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE gamma -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the gamma -ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located similar to 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE gamma rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock.
  •  
8.
  • Mayer, Manuel, et al. (author)
  • Constraints on particle acceleration in SS433/W50 from MAGIC and HESS observations
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • Context. The large jet kinetic power and non-thermal processes occurring in the microquasar SS 433 make this source a good candidate for a very high-energy (VHE) gamma-ray emitter. Gamma-ray fluxes above the sensitivity limits of current Cherenkov telescopes have been predicted for both the central X-ray binary system and the interaction regions of SS 433 jets with the surrounding W50 nebula. Non-thermal emission at lower energies has been previously reported, indicating that efficient particle acceleration is taking place in the system. Aims. We explore the capability of SS 433 to emit VHE gamma rays during periods in which the expected flux attenuation due to periodic eclipses (P-orb similar to 13.1 days) and precession of the circumstellar disk (P-pre similar to 162 days) periodically covering the central binary system is expected to be at its minimum. The eastern and western SS 433/W50 interaction regions are also examined using the whole data set available. We aim to constrain some theoretical models previously developed for this system with our observations. Methods. We made use of dedicated observations from the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC) and High Energy Spectroscopic System (H.E.S.S.) of SS 433 taken from 2006 to 2011. These observation were combined for the first time and accounted for a total effective observation time of 16.5 h, which were scheduled considering the expected phases of minimum absorption of the putative VHE emission. Gamma-ray attenuation does not affect the jet/medium interaction regions. In this case, the analysis of a larger data set amounting to similar to 40-80 h, depending on the region, was employed. Results. No evidence of VHE gamma-ray emission either from the central binary system or from the eastern/western interaction regions was found. Upper limits were computed for the combined data set. Differential fluxes from the central system are found to be less than or similar to 10(-12)-10(-13) TeV-1 cm(-2) s(-1) in an energy interval ranging from similar to few x 100 GeV to similar to few TeV. Integral flux limits down to similar to 10(-12)-10(-13) ph cm(-2) s(-1) and similar to 10(-13)-10(-14) ph cm(-2) s(-1) are obtained at 300 and 800 GeV, respectively. Our results are used to place constraints on the particle acceleration fraction at the inner jet regions and on the physics of the jet/medium interactions. Conclusions. Our findings suggest that the fraction of the jet kinetic power that is transferred to relativistic protons must be relatively small in SS 433, q(p) <= 2.5 x 10(-5), to explain the lack of TeV and neutrino emission from the central system. At the SS 433/W50 interface, the presence of magnetic fields greater than or similar to 10 mu G is derived assuming a synchrotron origin for the observed X-ray emission. This also implies the presence of high-energy electrons with E-e up to 50 TeV, preventing an efficient production of gamma-ray fluxes in these interaction regions.
  •  
9.
  • Abdalla, H., et al. (author)
  • Gamma-ray blazar spectra with HESS II mono analysis : The case of PKS2155-304 and PG1553+113
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 600
  • Journal article (peer-reviewed)abstract
    • Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivity to lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift >= 0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553 + 113 (0.43 < z < 0.58) are among the brightest objects in the gamma-ray sky, both showing clear signatures of gamma-ray absorption at E > 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims. The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553 + 113 near their SED peaks at energies approximate to 100 GeV. Methods. Multiple observational campaigns of PKS 2155 304 and PG 1553 + 113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results. Using the data from CT5, the energy spectra of PKS 2155 304 and PG 1553 + 113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155 304, which transits near zenith, and 110 GeV for the more northern PG 1553 + 113. The measured spectra, well fitted in both cases by a log-parabola spectral model ( with a 5.0 similar to statistical preference for non-zero curvature for PKS 2155 304 and 4.5 sigma for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E approximate to 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi-LAT spectrum of PKS 2155 304 was found to show significant curvature. For PG 1553+113, however, no significant detection of curvature in the intrinsic spectrum could be found within statistical and systematic uncertainties.
  •  
10.
  • Abdalla, H., et al. (author)
  • The gamma-ray spectrum of the core of Centaurus A as observed with HESS and Fermi-LAT
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Journal article (peer-reviewed)abstract
    • Centaurus A (Cen A) is the nearest radio galaxy discovered as a very-high-energy (VHE; 100 GeV-100 TeV) gamma-ray source by the High Energy Stereoscopic System (H.E.S.S.). It is a faint VHE gamma-ray emitter, though its VHE flux exceeds both the extrapolation from early Fermi-LAT observations as well as expectations from a (misaligned) single-zone synchrotron-self Compton (SSC) description. The latter satisfactorily reproduces the emission from Cen A at lower energies up to a few GeV. New observations with H.E.S.S., comparable in exposure time to those previously reported, were performed and eight years of Fermi-LAT data were accumulated to clarify the spectral characteristics of the gamma-ray emission from the core of Cen A. The results allow us for the first time to achieve the goal of constructing a representative, contemporaneous gamma-ray core spectrum of Cen A over almost five orders of magnitude in energy. Advanced analysis methods, including the template fitting method, allow detection in the VHE range of the core with a statistical significance of 12 sigma on the basis of 213 hours of total exposure time. The spectrum in the energy range of 250 GeV-6 TeV is compatible with a power-law function with a photon index Gamma = 2.52 +/- 0.13(stat) +/- 0.20(sys). An updated Fermi-LAT analysis provides evidence for spectral hardening by Delta Gamma similar or equal to 0.4 +/- 0.1 at gamma-ray energies above 2.8(-0.6)(+1.0) GeV at a level of 4.0 sigma. The fact that the spectrum hardens at GeV energies and extends into the VHE regime disfavour a single-zone SSC interpretation for the overall spectral energy distribution (SED) of the core and is suggestive of a new gamma-ray emitting component connecting the high-energy emission above the break energy to the one observed at VHE energies. The absence of significant variability at both GeV and TeV energies does not yet allow disentanglement of the physical nature of this component, though a jet-related origin is possible and a simple two-zone SED model fit is provided to this end.
  •  
11.
  • Abdalla, H., et al. (author)
  • The supernova remnant W49B as seen with HESS and Fermi-LAT
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • The supernova remnant (SNR) W49B originated from a core-collapse supernova that occurred between one and four thousand years ago, and subsequently evolved into a mixed-morphology remnant, which is interacting with molecular clouds (MC). Gamma-ray observations of SNR-MC associations are a powerful tool to constrain the origin of Galactic cosmic rays, as they can probe the acceleration of hadrons through their interaction with the surrounding medium and subsequent emission of non-thermal photons. We report the detection of a gamma-ray source coincident with W49B at very high energies (VHE; E > 100 GeV) with the H.E.S.S. Cherenkov telescopes together with a study of the source with five years of Fermi-LAT high-energy gamma-ray (0.06-300 GeV) data. The smoothly connected, combined source spectrum, measured from 60 MeV to multi-TeV energies, shows two significant spectral breaks at 304 +/- 20 MeV and 8.4(-2.5)(+2.5) GeV; the latter is constrained by the joint fit from the two instruments. The detected spectral features are similar to those observed in several other SNR-MC associations and are found to be indicative of gamma-ray emission produced through neutral-pion decay.
  •  
12.
  • Abdallah, H., et al. (author)
  • Search for gamma-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with HESS
  • 2018
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 120:20
  • Journal article (peer-reviewed)abstract
    • Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy gamma rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant gamma-ray excess above the background is found. We derive upper limits on the annihilation cross section (sigma v) for monoenergetic DM lines at the level of 4 x 10(-28) cm(3) s(-1) at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based gamma-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two gamma-ray photons at the level expected from the thermal relic density for TeV DM particles.
  •  
13.
  • Abdalla, H., et al. (author)
  • A search for new supernova remnant shells in the Galactic plane with HESS
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • A search for new supernova remnants (SNRs) has been conducted using TeV gamma-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912 + 101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.
  •  
14.
  • Abdalla, H., et al. (author)
  • Characterising the VHE diffuse emission in the central 200 parsecs of our Galaxy with HESS
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • The diffuse very high-energy (VHE; > 100 GeV) gamma-ray emission observed in the central 200 pc of the Milky Way by H.E.S.S. was found to follow dense matter distribution in the central molecular zone (CMZ) up to a longitudinal distance of about 130 pc to the Galactic centre (GC), where the flux rapidly decreases. This was initially interpreted as the result of a burst-like injection of energetic particles 104 yr ago, but a recent more sensitive H.E.S.S. analysis revealed that the cosmic-ray (CR) density profile drops with the distance to the centre, making data compatible with a steady cosmic PeVatron at the GC. In this paper, we extend this analysis to obtain, for the first time, a detailed characterisation of the correlation with matter and to search for additional features and individual gamma-ray sources in the inner 200 pc. Taking advantage of 250 h of H.E.S.S. data and improved analysis techniques, we perform a detailed morphology study of the diffuse VHE emission observed from the GC ridge and reconstruct its total spectrum. To test the various contributions to the total gamma-ray emission, we used an iterative 2D maximum-likelihood approach that allows us to build a phenomenological model of the emission by summing a number of different spatial components. We show that the emission correlated with dense matter covers the full CMZ and that its flux is about half the total diffuse emission flux. We also detect some emission at higher latitude that is likely produced by hadronic collisions of CRs in less dense regions of the GC interstellar medium. We detect an additional emission component centred on the GC and extending over about 15 pc that is consistent with the existence of a strong CR density gradient and confirms the presence of a CR accelerator at the very centre of our Galaxy. We show that the spectrum of full ridge diffuse emission is compatible with that previously derived from the central regions, suggesting that a single population of particles fills the entire CMZ. Finally, we report the discovery of a VHE gamma-ray source near the GC radio arc and argue that it is produced by the pulsar wind nebula candidate G0.13-0.11.
  •  
15.
  • Abdalla, H., et al. (author)
  • Characterizing the γ-ray long-term variability of PKS2155 304 with HESS and Fermi-LAT
  • 2017
  • In: Astronomy and Astrophysics. - : The European Southern Observatory. - 0004-6361 .- 1432-0746. ; 598
  • Journal article (peer-reviewed)abstract
    • Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100MeV < E < 300 GeV) and very high energy (VHE, E > 200 GeV) gamma-ray domain. Over the course of similar to 9 yr of H. E. S. S. observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index βVHE = 1 .10+ 0.10-0,13) on timescales larger than one day. An analysis of similar to 5.5 yr of HE Fermi-LAT data gives consistent results (βHE = 1 .20+ 0.21-0.23, on timescales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior (beta similar to 2) seen on shorter timescales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.
  •  
16.
  • Abdalla, H., et al. (author)
  • Deeper HESS observations of Vela Junior (RX J0852.0-4622) : Morphology studies and resolved spectroscopy
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • Aims. We study gamma-ray emission from the shell-type supernova remnant (SNR) RXJ0852.0-4622 to better characterize its spectral properties and its distribution over the SNR. Methods. The analysis of an extended High Energy Spectroscopic System (H.E.S.S.) data set at very high energies (E > 100 GeV) permits detailed studies, as well as spatially resolved spectroscopy, of the morphology and spectrum of the whole RXJ0852.0-4622 region. The H.E.S.S. data are combined with archival data from other wavebands and interpreted in the framework of leptonic and hadronic models. The joint Fermi-LAT-H.E.S.S. spectrum allows the direct determination of the spectral characteristics of the parent particle population in leptonic and hadronic scenarios using only GeV-TeV data. Results. An updated analysis of the H.E.S.S. data shows that the spectrum of the entire SNR connects smoothly to the high-energy spectrum measured by Fermi-LAT. The increased data set makes it possible to demonstrate that the H.E.S.S. spectrum deviates significantly from a power law and is well described by both a curved power law and a power law with an exponential cutoff at an energy of E-cut = (6.7 +/- 1.2(stat) +/- 1.2(syst)) TeV. The joint Fermi-LAT-H.E.S.S. spectrum allows the unambiguous identification of the spectral shape as a power law with an exponential cutoff. No significant evidence is found for a variation of the spectral parameters across the SNR, suggesting similar conditions of particle acceleration across the remnant. A simple modeling using one particle population to model the SNR emission demonstrates that both leptonic and hadronic emission scenarios remain plausible. It is also shown that at least a part of the shell emission is likely due to the presence of a pulsar wind nebula around PSR J0855-4644.
  •  
17.
  • Abdalla, H., et al. (author)
  • Evidence of 100 TeV gamma-ray emission from HESS J1702-420 : A new PeVatron candidate
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Journal article (peer-reviewed)abstract
    • Aims. The identification of PeVatrons, hadronic particle accelerators reaching the knee of the cosmic ray spectrum (few x 10(15) eV), is crucial to understand the origin of cosmic rays in the Galaxy. We provide an update on the unidentified source HESS J1702-420, a promising PeVatron candidate. Methods. We present new observations of HESS J1702-420 made with the High Energy Stereoscopic System (H.E.S.S.), and processed using improved analysis techniques. The analysis configuration was optimized to enhance the collection area at the highest energies. We applied a threedimensional likelihood analysis to model the source region and adjust non thermal radiative spectral models to the gamma-ray data. We also analyzed archival Fermi Large Area Telescope data to constrain the source spectrum at gamma-ray energies >10 GeV. Results. We report the detection of gamma-rays up to 100 TeV from a specific region of HESS J1702-420, which is well described by a new source component called HESS J1702-420A that was separated from the bulk of TeV emission at a 5:4 sigma confidence level. The power law gamma-ray spectrum of HESS J1702-420A extends with an index of Gamma = 1:53 +/- 0:19(stat) +/- 0:20(sys) and without curvature up to the energy band 64 113 TeV, in which it was detected by H.E.S.S. at a 4:0 sigma confidence level. This makes HESS J1702-420A a compelling candidate site for the presence of extremely high energy cosmic rays. With a flux above 2 TeV of (2:08 +/- 0:49(stat) +/- 0:62(sys)) x 10(-13) cm(-2) s(-1) and a radius of (0:06 +/- 0:02(stat) +/- 0:03(sys))degrees, HESS J1702-420A is outshone - below a few tens of TeV - by the companion HESS J1702-420B. The latter has a steep spectral index of = 2:62 +/- 0:10(stat) +/- 0:20(sys) and an elongated shape, and it accounts for most of the low-energy HESS J1702-420 flux. Simple hadronic and leptonic emission models can be well adjusted to the spectra of both components. Remarkably, in a hadronic scenario, the cut-o ff energy of the particle distribution powering HESS J1702-420A is found to be higher than 0:5 PeV at a 95% confidence level. Conclusions. For the first time, H.E.S.S. resolved two components with significantly di fferent morphologies and spectral indices, both detected at >5 sigma confidence level, whose combined emissions result in the source HESS J1702-420. We detected HESS J1702-420A at a 4:0 sigma confidence level in the energy band 64 113 TeV, which brings evidence for the source emission up to 100 TeV. In a hadronic emission scenario, the hard gamma-ray spectrum of HESS J1702-420A implies that the source likely harbors PeV protons, thus becoming one of the most solid PeVatron candidates detected so far in H.E.S.S. data. However, a leptonic origin of the observed TeV emission cannot be ruled out either.
  •  
18.
  • Abdalla, H., et al. (author)
  • First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst HESS observations of FRB 150418
  • 2017
  • In: Astronomy and Astrophysics. - : The European Southern Observatory (ESO). - 0004-6361 .- 1432-0746. ; 597
  • Journal article (peer-reviewed)abstract
    • Aims. Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods. Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results. The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Phi(gamma)(E > 350 GeV) < 1.33 x 10(-8) m(-2) s(-1). Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions. No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0 : 492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5 : 1 x 10(47) erg/s at 99% C.L.
  •  
19.
  • Abdalla, H., et al. (author)
  • HESS discovery of very high energy gamma-ray emission from PKS 0625-354
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 476:3, s. 4187-4198
  • Journal article (peer-reviewed)abstract
    • PKS 0625-354 (z = 0.055) was observed with the four High Energy Stereoscopic System (H.E.S.S.) telescopes in 2012 during 5.5 h. The source was detected above an energy threshold of 200 GeV at a significance level of 6.1 sigma. No significant variability is found in these observations. The source is well described with a power-law spectrum with photon index Gamma = 2.84 +/- 0.50(stat) +/- 0.10(syst) and normalization (at E-0 = 1.0 TeV) N-0(E-0)=(0.58 +/- 0.22(stat) +/- 0.12(syst)) x 10(-12) TeV-1 cm(-2) s(-1). Multiwavelength data collected with Fermi-LAT, Swift-XRT, Swift-UVOT, ATOM and WISE are also analysed. Significant variability is observed only in the Fermi-LAT gamma-ray and Swift-XRT X-ray energy bands. Having a good multiwavelength coverage from radio to very high energy, we performed a broad-band modelling from two types of emission scenarios. The results from a one zone lepto-hadronic and a multizone leptonic models are compared and discussed. On the grounds of energetics, our analysis favours a leptonic multizone model. Models associated to the X-ray variability constraint support previous results, suggesting a BL Lac nature of PKS 0625-354 with, however, a large-scale jet structure typical of a radio galaxy.
  •  
20.
  • Abdalla, H., et al. (author)
  • HESS observations of RX J1713.7-3946 with improved angular and spectral resolution : Evidence for gamma-ray emission extending beyond the X-ray emitting shell
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • Supernova remnants exhibit shock fronts (shells) that can accelerate charged particles up to very high energies. In the past decade, measurements of a handful of shell-type supernova remnants in very high-energy gamma rays have provided unique insights into the acceleration process. Among those objects, RX J1713.7-3946 (also known as G347.3-0.5) has the largest surface brightness, allowing us in the past to perform the most comprehensive study of morphology and spatially resolved spectra of any such very high-energy gamma-ray source. Here we present extensive new H.E.S.S. measurements of RX J1713.7-3946, almost doubling the observation time compared to our previous publication. Combined with new improved analysis tools, the previous sensitivity is more than doubled. The H.E.S.S. angular resolution of 0.048 degrees (0.036 degrees above 2 TeV) is unprecedented in gamma-ray astronomy and probes physical scales of 0.8 (0.6) parsec at the remnant's location. The new H. E. S. S. image of RX J1713.7-3946 allows us to reveal clear morphological di ff erences between X-rays and gamma rays. In particular, for the outer edge of the brightest shell region, we find the first ever indication for particles in the process of leaving the acceleration shock region. By studying the broadband energy spectrum, we furthermore extract properties of the parent particle populations, providing new input to the discussion of the leptonic or hadronic nature of the gamma-ray emission mechanism.
  •  
21.
  • Abdalla, H., et al. (author)
  • Measurement of the EBL spectral energy distribution using the VHE gamma-ray spectra of HESS blazars
  • 2017
  • In: Astronomy and Astrophysics. - : The European Southern Observatory (ESO). - 0004-6361 .- 1432-0746. ; 606
  • Journal article (peer-reviewed)abstract
    • Very high-energy gamma rays (VHE, E greater than or similar to 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE gamma rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5 sigma, and the intensity of the EBL obtained in different spectral bands is presented together with the associated gamma-ray horizon.
  •  
22.
  • Abdalla, H., et al. (author)
  • Population study of Galactic supernova remnants at very high gamma-ray energies with HESS
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at E approximate to 3 x 10(15) eV. Our MilkyWay galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE gamma-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to n <= 7 cm(-3) and electron-to-proton energy fractions above 10 TeV to epsilon(ep) <= 5 x 10(-3). Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.
  •  
23.
  • Abdalla, H., et al. (author)
  • Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow
  • 2021
  • In: Science. - : American Association of Advancement in Science. - 0036-8075 .- 1095-9203. ; 372:6546, s. 1081-1085
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic sources followed by fading afterglow emission, are associated with stellar core collapse events. We report the detection of very- high-energy (VHE) gamma rays from the afterglow of GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic System (H.E.S.S.). The low luminosity and redshift of GRB 190829A reduce both internal and external absorption, allowing determination of its intrinsic energy spectrum. Between energies of 0.18 and 3.3 tera-electron volts, this spectrum is described by a power law with photon index of 2.07 +/- 0.09, similar to the x-ray spectrum. The x-ray and VHE gamma- ray light curves also show similar decay profiles. These similar characteristics in the x-ray and gamma-ray bands challenge GRB afterglow emission scenarios.
  •  
24.
  • Abdalla, H., et al. (author)
  • Searching for TeV Gamma-Ray Emission from SGR 1935+2154 during Its 2020 X-Ray and Radio Bursting Phase
  • 2021
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 919:2
  • Journal article (peer-reviewed)abstract
    • Magnetar hyperflares are the most plausible explanation for fast radio bursts (FRBs)-enigmatic powerful radio pulses with durations of several milliseconds and high brightness temperatures. The first observational evidence for this scenario was obtained in 2020 April when an FRB was detected from the direction of the Galactic magnetar and soft gamma-ray repeater SGR 1935+2154. The FRB was preceded by two gamma-ray outburst alerts by the BAT instrument aboard the Swift satellite, which triggered follow-up observations by the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observed SGR 1935+2154 for 2 hr on 2020 April 28. The observations are coincident with X-ray bursts from the magnetar detected by INTEGRAL and Fermi-GBM, thus providing the first very high energy gamma-ray observations of a magnetar in a flaring state. High-quality data acquired during these follow-up observations allow us to perform a search for short-time transients. No significant signal at energies E > 0.6 TeV is found, and upper limits on the persistent and transient emission are derived. We here present the analysis of these observations and discuss the obtained results and prospects of the H.E.S.S. follow-up program for soft gamma-ray repeaters.
  •  
25.
  • Abdalla, H., et al. (author)
  • Systematic search for very-high-energy gamma-ray emission from bow shocks of runaway stars
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • Context. Runaway stars form bow shocks by ploughing through the interstellar medium at supersonic speeds and are promising sources of non-thermal emission of photons. One of these objects has been found to emit non-thermal radiation in the radio band. This triggered the development of theoretical models predicting non-thermal photons from radio up to very-high-energy (VHE, E >= 0.1 TeV) gamma rays. Subsequently, one bow shock was also detected in X-ray observations. However, the data did not allow discrimination between a hot thermal and a non-thermal origin. Further observations of different candidates at X-ray energies showed no evidence for emission at the position of the bow shocks either. A systematic search in the Fermi-LAT energy regime resulted in flux upper limits for 27 candidates listed in the E-BOSS catalogue. Aims. Here we perform the first systematic search for VHE gamma-ray emission from bow shocks of runaway stars. Methods. Using all available archival H.E.S.S. data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue release. Out of the 73 bow shock candidates in this catalogue, 32 have been observed with H.E.S.S. Results. None of the observed 32 bow shock candidates in this population study show significant emission in the H.E.S.S. energy range. Therefore, flux upper limits are calculated in five energy bins and the fraction of the kinetic wind power that is converted into VHE gamma rays is constrained. Conclusions. Emission from stellar bow shocks is not detected in the energy range between 0.14 and 18 TeV. The resulting upper limits constrain the level of VHE gamma-ray emission from these objects down to 0.1-1% of the kinetic wind energy.
  •  
26.
  • Abdalla, H., et al. (author)
  • TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with HESS
  • 2017
  • In: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 850:2
  • Journal article (peer-reviewed)abstract
    • We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between 270 GeV to 8.55 TeV. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.
  •  
27.
  • Abdalla, H., et al. (author)
  • The HESS Galactic plane survey
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • We present the results of the most comprehensive survey of the Galactic plane in very high-energy (VHE) gamma-rays, including a public release of Galactic sky maps, a catalog of VHE sources, and the discovery of 16 new sources of VHE gamma-rays. The High Energy Spectroscopic System (H.E.S.S.) Galactic plane survey (HGPS) was a decade-long observation program carried out by the H.E.S.S. I array of Cherenkov telescopes in Namibia from 2004 to 2013. The observations amount to nearly 2700 h of quality-selected data, covering the Galactic plane at longitudes from l = 250 degrees to 65 degrees and latitudes vertical bar b vertical bar <= 3 degrees. In addition to the unprecedented spatial coverage, the HGPS also features a relatively high angular resolution (0.08 degrees approximate to 5 arcmin mean point spread function 68% containment radius), sensitivity (less than or similar to 1.5% Crab flux for point-like sources), and energy range (0.2-100 TeV). We constructed a catalog of VHE gamma-ray sources from the HGPS data set with a systematic procedure for both source detection and characterization of morphology and spectrum. We present this likelihood-based method in detail, including the introduction of a model component to account for unresolved, large-scale emission along the Galactic plane. In total, the resulting HGPS catalog contains 78 VHE sources, of which 14 are not reanalyzed here, for example, due to their complex morphology, namely shell-like sources and the Galactic center region. Where possible, we provide a firm identification of the VHE source or plausible associations with sources in other astronomical catalogs. We also studied the characteristics of the VHE sources with source parameter distributions. 16 new sources were previously unknown or unpublished, and we individually discuss their identifications or possible associations. We firmly identified 31 sources as pulsar wind nebulae (PWNe), supernova remnants (SNRs), composite SNRs, or gamma-ray binaries. Among the 47 sources not yet identified, most of them (36) have possible associations with cataloged objects, notably PWNe and energetic pulsars that could power VHE PWNe.
  •  
28.
  • Abdalla, H., et al. (author)
  • Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 610
  • Journal article (peer-reviewed)abstract
    • Context. Recently, the high-energy (HE, 0.1-100 GeV) gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Results. VHE gamma-ray emission is detected with a statistical significance of 6.4 sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1-10 TeV energy range is (1.4 +/- 0.2) x 10(35) erg s(-1). A luminosity of (5 +/- 1) x 10(35) erg s(-1) is reached during 20% of the orbit. HE and VHE gamma-ray emissions are anti-correlated. LMC P3 is the most luminous gamma-ray binary known so far.
  •  
29.
  • Abdalla, H., et al. (author)
  • HESS J1741-302 : a hidden accelerator in the Galactic plane
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • The H.E.S.S. Collaboration has discovered a new very high energy (VHE, E > 0.1 TeV) gamma-ray source, HESS J1741-302, located in the Galactic plane. Despite several attempts to constrain its nature, no plausible counterpart has been found so far at X-ray and MeV/GeV gamma-ray energies, and the source remains unidentified. An analysis of 145-h of observations of HESS J1741-302 at VHEs has revealed a steady and relatively weak TeV source (similar to 1% of the Crab Nebula flux), with a spectral index of Gamma = 2.3 +/- 0.2(stat) +/- 0.2(sys), extending to energies up to 10 TeV without any clear signature of a cut-off. In a hadronic scenario, such a spectrum implies an object with particle acceleration up to energies of several hundred TeV. Contrary to most H.E.S.S. unidentified sources, the angular size of HESS J1741-302 is compatible with the H.E.S.S. point spread function at VHEs, with an extension constrained to be below 0.068 degrees at a 99% confidence level. The gamma-ray emission detected by H.E.S.S. can be explained both within a hadronic scenario, due to collisions of protons with energies of hundreds of TeV with dense molecular clouds, and in a leptonic scenario, as a relic pulsar wind nebula, possibly powered by the middle-aged (20 kyr) pulsar PSR B1737-30. A binary scenario, related to the compact radio source 1LC 358.266+0.038 found to be spatially coincident with the best fit position of HESS J1741-302, is also envisaged.
  •  
30.
  • Abdalla, H., et al. (author)
  • HESS Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center
  • 2016
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 117:15
  • Journal article (peer-reviewed)abstract
    • A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l = -1.5 degrees, b = 0 degrees and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. results. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.
  •  
31.
  • Abdalla, H., et al. (author)
  • The population of TeV pulsar wind nebulae in the HESS Galactic Plane Survey
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • The nine-year H.E.S.S. Galactic Plane Survey (HGPS) has yielded the most uniform observation scan of the inner Milky Way in the TeV gamma-ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of TeV pulsar wind nebulae found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spindown power (E) over dot. This seems to be caused both by an increase of extension with decreasing (E) over dot, and hence with time, compatible with a power law R-PWN((E) over dot) similar to(E) over dot(0.65 +/- 0.20), and by a mild decrease of TeV gamma-ray luminosity with decreasing (E) over dot, compatible with L-1 (10 TeV) similar to (E) over dot(0.59 +/- 0.21). We also find that the off sets of pulsars with respect to the wind nebula centre with ages around 10 kyr are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar off set is correlated with a high apparent TeV efficiency L1- 10 TeV / (E) over dot. In addition to 14 HGPS sources considered firmly identified pulsar wind nebulae and 5 additional pulsar wind nebulae taken from literature, we find 10 HGPS sources that are likely TeV pulsar wind nebula candidates. Using a model that subsumes the present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the TeV observables and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.
  •  
32.
  • Griffin, M. J., et al. (author)
  • The Herschel-SPIRE instrument and its in-flight performance
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L3-
  • Journal article (peer-reviewed)abstract
    • The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
  •  
33.
  • Abdalla, H., et al. (author)
  • LMC N132D : A mature supernova remnant with a power-law gamma-ray spectrum extending beyond 8 TeV
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 655
  • Journal article (peer-reviewed)abstract
    • Context. Supernova remnants (SNRs) are commonly thought to be the dominant sources of Galactic cosmic rays up to the knee of the cosmic-ray spectrum at a few PeV. Imaging Atmospheric Cherenkov Telescopes have revealed young SNRs as very-high-energy (VHE, >100 GeV) gamma-ray sources, but for only a few SNRs the hadronic cosmic-ray origin of their gamma-ray emission is indisputably established. In all these cases, the gamma-ray spectra exhibit a spectral cutoff at energies much below 100 TeV and thus do not reach the PeVatron regime. Aims. The aim of this work was to achieve a firm detection for the oxygen-rich SNR LMC N132D in the VHE gamma-ray domain with an extended set of data, and to clarify the spectral characteristics and the localization of the gamma-ray emission from this exceptionally powerful gamma-ray-emitting SNR. Methods. We analyzed 252 h of High Energy Stereoscopic System (H.E.S.S.) observations towards SNR N132D that were accumulated between December 2004 and March 2016 during a deep survey of the Large Magellanic Cloud, adding 104 h of observations to the previously published data set to ensure a > 5 sigma detection. To broaden the gamma-ray spectral coverage required for modeling the spectral energy distribution, an analysis of Fermi-LAT Pass 8 data was also included. Results. We unambiguously detect N132D at VHE with a significance of 5.7 sigma. We report the results of a detailed analysis of its spectrum and localization based on the extended H.E.S.S. data set. The joint analysis of the extended H.E.S.S and Fermi-LAT data results in a spectral energy distribution in the energy range from 1.7 GeV to 14.8 TeV, which suggests a high luminosity of N132D at GeV and TeV energies. We set a lower limit on a gamma-ray cutoff energy of 8 TeV with a confidence level of 95%. The new gamma-ray spectrum as well as multiwavelength observations of N132D when compared to physical models suggests a hadronic origin of the VHE gamma-ray emission. Conclusions. SNR N132D is a VHE gamma-ray source that shows a spectrum extending to the VHE domain without a spectral cutoff at a few TeV, unlike the younger oxygen-rich SNR Cassiopeia A. The gamma-ray emission is best explained by a dominant hadronic component formed by diffusive shock acceleration. The gamma-ray properties of N132D may be affected by an interaction with a nearby molecular cloud that partially lies inside the 95% confidence region of the source position.
  •  
34.
  • Abdalla, H., et al. (author)
  • Search for Dark Matter Annihilation Signals from Unidentified Fermi-LAT Objects with HESS
  • 2021
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 918:1
  • Journal article (peer-reviewed)abstract
    • Cosmological N-body simulations show that Milky Way-sized galaxies harbor a population of unmerged dark matter (DM) subhalos. These subhalos could shine in gamma-rays and eventually be detected in gamma-ray surveys as unidentified sources. We performed a thorough selection among unidentified Fermi-Large Area Telescope Objects (UFOs) to identify them as possible tera-electron-volt-scale DM subhalo candidates. We search for very-high-energy (E greater than or similar to 100 GeV) gamma-ray emissions using H.E.S.S. observations toward four selected UFOs. Since no significant very-high-energy gamma-ray emission is detected in any data set of the four observed UFOs or in the combined UFO data set, strong constraints are derived on the product of the velocity-weighted annihilation cross section sigma v by the J factor for the DM models. The 95% confidence level observed upper limits derived from combined H.E.S.S. observations reach sigma vJ values of 3.7 x 10(-5) and 8.1 x 10(-6) GeV(2 )cm(-2 )s(-1) in the W (+) W (-) and tau (+) tau (-) channels, respectively, for a 1 TeV DM mass. Focusing on thermal weakly interacting massive particles, the H.E.S.S. constraints restrict the J factors to lie in the range 6.1 x 10(19)-2.0 x 10(21) GeV(2 )cm(-5) and the masses to lie between 0.2 and 6 TeV in the W (+) W (-) channel. For the tau (+) tau (-) channel, the J factors lie in the range 7.0 x 10(19)-7.1 x 10(20) GeV(2 )cm(-5) and the masses lie between 0.2 and 0.5 TeV. Assuming model-dependent predictions from cosmological N-body simulations on the J-factor distribution for Milky Way-sized galaxies, the DM models with masses >0.3 TeV for the UFO emissions can be ruled out at high confidence level.
  •  
35.
  • Abdalla, H., et al. (author)
  • An extreme particle accelerator in the Galactic plane : HESS J1826-130
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 644, s. 1-8
  • Journal article (peer-reviewed)abstract
    • The unidentified very-high-energy (VHE; E > 0.1 TeV) gamma -ray source, HESS J1826-130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady gamma -ray flux from HESS J1826-130, which appears extended with a half-width of 0.21 degrees +/- 0.02 (stat)degrees stat degrees +/- 0.05 (sys)degrees sys degrees . The source spectrum is best fit with either a power-law function with a spectral index Gamma = 1.78 +/- 0.10(stat) +/- 0.20(sys) and an exponential cut-off at 15.2 (+5.5)(-3.2) -3.2+5.5 TeV, or a broken power-law with Gamma (1) = 1.96 +/- 0.06(stat) +/- 0.20(sys), Gamma (2) = 3.59 +/- 0.69(stat) +/- 0.20(sys) for energies below and above E-br = 11.2 +/- 2.7 TeV, respectively. The VHE flux from HESS J1826-130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825-137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826-130 VHE emission related to PSR J1826-1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826-130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to greater than or similar to 200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.
  •  
36.
  • Abdalla, H., et al. (author)
  • Detection of very-high-energy gamma-ray emission from the colliding wind binary eta Car with HESS
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 635, s. 1-8
  • Journal article (peer-reviewed)abstract
    • Aims. Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV < E < 100 GeV) gamma-ray emitters. eta Car is the most prominent member of this object class and is confirmed to emit phase-locked HE gamma rays from hundreds of MeV to 100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E >100 GeV) gamma-ray emission from eta Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.).Methods. The region around eta Car was observed with H.E.S.S. between orbital phase p = 0.78-1.10, with a closer sampling at p approximate to 0.95 and p approximate to 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the eta Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions.Results. H.E.S.S. detected VHE gamma-ray emission from the direction of eta Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE gamma rays agree within statistical and systematic errors before and after periastron. The gamma-ray spectrum extends up to at least 400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data.
  •  
37.
  • Abdalla, H., et al. (author)
  • Searches for gamma-ray lines and 'pure WIMP' spectra from Dark Matter annihilations in dwarf galaxies with HESS
  • 2018
  • In: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :11
  • Journal article (peer-reviewed)abstract
    • Dwarf spheroidal galaxies are among the most promising targets for detecting signals of Dark Matter (DM) annihilations. The H.E.S.S. experiment has observed five of these systems for a total of about 130 hours. The data are re-analyzed here, and, in the absence of any detected signals, are interpreted in terms of limits on the DM annihilation cross section. Two scenarios are considered: i) DM annihilation into mono-energetic gamma-rays and ii) DM in the form of pure WIMP multiplets that, annihilating into all electroweak bosons, produce a distinctive gamma-ray spectral shape with a high-energy peak at the DM mass and a lower-energy continuum. For case i), upper limits at 95% confidence level of about less than or similar to 3 x 10(-25) cm(3) s(-1) are obtained in the mass range of 400 GeV to 1TeV. For case ii), the full spectral shape of the models is used and several excluded regions are identified, but the thermal masses of the candidates are not robustly ruled out.
  •  
38.
  • Abdalla, H., et al. (author)
  • Very high energy gamma-ray emission from two blazars of unknown redshift and upper limits on their distance
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 494:4, s. 5590-5602
  • Journal article (peer-reviewed)abstract
    • We report on the detection of very high energy (VHE; E > 100 GeV) gamma-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE gamma-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of z < 0.98 and of PKS 1440-389 of z < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 <= z < 0.98 and of PKS 1440-389 to 0.14 (sic) z < 0.53.
  •  
39.
  • Speliotes, Elizabeth K., et al. (author)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Journal article (peer-reviewed)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
40.
  • Abdalla, H., et al. (author)
  • A very-high-energy component deep in the gamma-ray burst afterglow
  • 2019
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 575:7783, s. 464-467
  • Journal article (peer-reviewed)abstract
    • Gamma-ray bursts (GRBs) are brief flashes of gamma-rays and are considered to be the most energetic explosive phenomena in the Universe(1). The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed(2). GRBs typically emit most of their energy via.-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments(3). However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive(4). Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and gamma-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.
  •  
41.
  • Abdalla, H., et al. (author)
  • Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE gamma-ray observations with HESS
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627, s. 1-19
  • Journal article (peer-reviewed)abstract
    • The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100MeV < E < 100 GeV) gamma-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) gamma-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8 : 7 sigma significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 +/- 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r greater than or similar to 1 : 7 X 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.
  •  
42.
  • Abdalla, H., et al. (author)
  • First ground-based measurement of sub-20 GeV to 100 GeV gamma-Rays from the Vela pulsar with HESS II
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Journal article (peer-reviewed)abstract
    • Aims. We report on the measurement and investigation of pulsed high-energy y-ray emission from the Vela pulsar, PSR B0833-45, based on observations with the largest telescope of H.E.S.S., CT5, in monoscopic mode, and on data obtained with the Fermi-LAT. Methods. Data from 40.3 h of observations carried out with the H.E.S.S. II array from 2013 to 2015 have been used. A dedicated very low-threshold event reconstruction and analysis pipeline was developed to achieve the lowest possible energy threshold. Eight years of Fermi-LAT data were analysed and also used as reference to validate the CT5 telescope response model and analysis methods. Results. A pulsed gamma-ray signal at a significance level of more than 15 sigma is detected from the P2 peak of the Vela pulsar light curve. Of a total of 15 835 events, more than 6000 lie at an energy below 20 GeV, implying a significant overlap between H.E.S.S. II-CT5 and the Fermi-LAT. While the investigation of the pulsar light curve with the LAT confirms characteristics previously known up to 20 GeV in the tens of GeV energy range, CT5 data show a change in the pulse morphology of P2, i.e. an extreme sharpening of its trailing edge, together with the possible onset of a new component at 3.4 sigma significance level. Assuming a power-law model for the P2 spectrum, an excellent agreement is found for the photon indices (Gamma similar or equal to 4.1) obtained with the two telescopes above 10 GeV and an upper bound of 8% is derived on the relative offset between their energy scales. Using data from both instruments, it is shown however that the spectrum of P2 in the 10-100 GeV has a pronounced curvature; this is a confirmation of the sub-exponential cut-off form found at lower energies with the LAT. This is further supported by weak evidence of an emission above 100 GeV obtained with CT5. In contrast, converging indications are found from both CT5 and LAT data for the emergence of a hard component above 50 GeV in the leading wing (LW2) of P2, which possibly extends beyond 100 GeV. Conclusions. The detection demonstrates the performance and understanding of CT5 from 100 GeV down to the sub-20 GeV domain, i.e. unprecedented low energy for ground-based gamma-ray astronomy. The extreme sharpening of the trailing edge of the P2 peak found in the H.E.S.S. II light curve of the Vela pulsar and the possible extension beyond 100 GeV of at least one of its features, LW2, provide further constraints to models of gamma-Ray emission from pulsars.
  •  
43.
  • Abdalla, H., et al. (author)
  • H.E.S.S. observations of the flaring gravitationally lensed galaxy PKS 1830–211
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:3, s. 3886-3891
  • Journal article (peer-reviewed)abstract
    • PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.
  •  
44.
  • Abdalla, H., et al. (author)
  • HESS detection of very high-energy gamma-ray emission from the quasar PKS 0736+017
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 633, s. 1-11
  • Journal article (peer-reviewed)abstract
    • Context. Flat-spectrum radio-quasars (FSRQs) are rarely detected at very high energies (E& x2004;>=& x2004;100 GeV) due to their low-frequency-peaked spectral energy distributions. At present, only six FSRQs are known to emit very high-energy (VHE) photons, representing only 7% of the VHE extragalactic catalog, which is largely dominated by high-frequency-peaked BL Lacertae objects. Aims. Following the detection of MeV-GeV gamma-ray flaring activity from the FSRQ PKS 0736+017 (z& x2004;=& x2004;0.189) with Fermi-LAT, the H.E.S.S. array of Cherenkov telescopes triggered target-of-opportunity (ToO) observations on February 18, 2015, with the goal of studying the gamma-ray emission in the VHE band. Methods. H.E.S.S. ToO observations were carried out during the nights of February 18, 19, 21, and 24, 2015. Together with Fermi-LAT, the multi-wavelength coverage of the flare includes Swift observations in soft X-ray and optical-UV bands, and optical monitoring (photometry and spectro-polarimetry) by the Steward Observatory, and the ATOM, the KAIT, and the ASAS-SN telescopes. Results. VHE emission from PKS 0736+017 was detected with H.E.S.S. only during the night of February 19, 2015. Fermi-LAT data indicate the presence of a gamma-ray flare, peaking at the time of the H.E.S.S. detection, with a flux doubling timescale of around six hours. The gamma-ray flare was accompanied by at least a 1 mag brightening of the non-thermal optical continuum. No simultaneous observations at longer wavelengths are available for the night of the H.E.S.S. detection. The gamma-ray observations with H.E.S.S. and Fermi-LAT are used to put constraints on the location of the gamma-ray emitting region during the flare: it is constrained to be just outside the radius of the broad-line region r(BLR) with a bulk Lorentz factor Gamma& x2004;similar or equal to& x2004;20, or at the level of the radius of the dusty torus r(torus) with Gamma& x2004;similar or equal to& x2004;60. Conclusions. PKS 0736+017 is the seventh FSRQ known to emit VHE photons, and at z& x2004;=& x2004;0.189 is the nearest so far. The location of the gamma-ray emitting region during the flare can be tightly constrained thanks to opacity, variability, and collimation arguments.
  •  
45.
  • Abdalla, H., et al. (author)
  • HESS observations of the flaring gravitationally lensed galaxy PKS 1830-211
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 486:3, s. 3886-3891
  • Journal article (peer-reviewed)abstract
    • PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.
  •  
46.
  • Abdalla, H., et al. (author)
  • Particle transport within the pulsar wind nebula HESS J1825-137
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Journal article (peer-reviewed)abstract
    • Context. We present a detailed view of the pulsar wind nebula (PWN) HESS J1825-137. We aim to constrain the mechanisms dominating the particle transport within the nebula, accounting for its anomalously large size and spectral characteristics. Aims. The nebula was studied using a deep exposure from over 12 years of H.E.S.S. I operation, together with data from H.E.S.S. II that improve the low-energy sensitivity. Enhanced energy-dependent morphological and spatially resolved spectral analyses probe the very high energy (VHE, E > 0.1 TeV) gamma-ray properties of the nebula. Methods. The nebula emission is revealed to extend out to 1.5 degrees from the pulsar, similar to 1.5 times farther than previously seen, making HESS J1825-137, with an intrinsic diameter of similar to 100 pc, potentially the largest gamma-ray PWN currently known. Characterising the strongly energy-dependent morphology of the nebula enables us to constrain the particle transport mechanisms. A dependence of the nebula extent with energy of R proportional to E alpha with alpha = -0.29 +/- 0.04(stat) +/- 0.05(sys) disfavours a pure diffusion scenario for particle transport within the nebula. The total gamma-ray flux of the nebula above 1 TeV is found to be (1.12 +/- 0.03(stat) +/- 0.25(sys)) +/- 10(-11) cm(-2) s(-1), corresponding to similar to 64% of the flux of the Crab nebula. Results. HESS J1825-137 is a PWN with clearly energy-dependent morphology at VHE gamma-ray energies. This source is used as a laboratory to investigate particle transport within intermediate-age PWNe. Based on deep observations of this highly spatially extended PWN, we produce a spectral map of the region that provides insights into the spectral variation within the nebula.
  •  
47.
  • Abdalla, H., et al. (author)
  • Probing the Magnetic Field in the GW170817 Outflow Using HESS Observations
  • 2020
  • In: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 894:2, s. 1-5
  • Journal article (peer-reviewed)abstract
    • The detection of the first electromagnetic counterpart to the binary neutron star (BNS) merger remnant GW170817 established the connection between short gamma-ray bursts and BNS mergers. It also confirmed the forging of heavy elements in the ejecta (a so-called kilonova) via the r-process nucleosynthesis. The appearance of nonthermal radio and X-ray emission, as well as the brightening, which lasted more than 100 days, were somewhat unexpected. Current theoretical models attempt to explain this temporal behavior as either originating from a relativistic off-axis jet or a kilonova-like outflow. In either scenario, there is some ambiguity regarding how much energy is transported in the nonthermal electrons versus the magnetic field of the emission region. Combining the Very Large Array (radio) and Chandra (X-ray) measurements with observations in the GeV-TeV domain can help break this ambiguity, almost independently of the assumed origin of the emission. Here we report for the first time on deep H.E.S.S. observations of GW170817/GRB 170817A between 124 and 272 days after the BNS merger with the full H.E.S.S. array of telescopes, as well as on an updated analysis of the prompt (<5 days) observations with the upgraded H.E.S.S. phase-I telescopes. We discuss implications of the H.E.S.S. measurement for the magnetic field in the context of different source scenarios.
  •  
48.
  • Abdalla, H., et al. (author)
  • Resolving acceleration to very high energies along the jet of Centaurus A
  • 2020
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 582:7812, s. 356-359
  • Journal article (peer-reviewed)abstract
    • The nearby radio galaxy Centaurus A belongs to a class of active galaxies that are luminous at radio wavelengths. Most show collimated relativistic outflows known as jets, which extend over hundreds of thousands of parsecs for the most powerful sources. Accretion of matter onto the central supermassive black hole is believed to fuel these jets and power their emission(1). Synchrotron radiation from relativistic electrons causes the radio emission, and it has been suggested that the X-ray emission from Centaurus A also originates in electron synchrotron processes(2-4). Another possible explanation is inverse Compton scattering with cosmic microwave background (CMB) soft photons(5-7). Synchrotron radiation needs ultrarelativistic electrons (about 50 teraelectronvolts) and, given their short cooling times, requires some continuous re-acceleration mechanism(8). Inverse Compton scattering, on the other hand, does not require very energetic electrons, but the jets must stay highly relativistic on large scales (exceeding 1 megaparsec). Some recent evidence disfavours inverse Compton-CMB models(9-12), although other work seems to be compatible with them(13,14). In principle, the detection of extended gamma-ray emission, which directly probes the presence of ultrarelativistic electrons, could distinguish between these options. At gigaelectronvolt energies there is also an unusual spectral hardening(15,16)in Centaurus A that has not yet been explained. Here we report observations of Centaurus A at teraelectronvolt energies that resolve its large-scale jet. We interpret the data as evidence for the acceleration of ultrarelativistic electrons in the jet, and favour the synchrotron explanation for the X-rays. Given that this jet is not exceptional in terms of power, length or speed, it is possible that ultrarelativistic electrons are commonplace in the large-scale jets of radio-loud active galaxies. Observations of the radio galaxy Centaurus A at teraelectronvolt energies resolve its large-scale jet and favour electron synchrotron processes as the source of its X-ray emission.
  •  
49.
  • Abdalla, H., et al. (author)
  • Resolving the Crab pulsar wind nebula at teraelectronvolt energies
  • 2020
  • In: Nature Astronomy. - : Nature Publishing Group. - 2397-3366. ; 4:2, s. 167-173
  • Journal article (peer-reviewed)abstract
    • An angular extension at gamma-ray energies of 52 arcseconds is detected for the Crab nebula, revealing the emission region of the highest-energy gamma rays; simulations of the electromagnetic emission provide a non-trivial test of our understanding of particle acceleration in the Crab nebula. The Crab nebula is one of the most-studied cosmic particle accelerators, shining brightly across the entire electromagnetic spectrum up to very-high-energy gamma rays(1,2). It is known from observations in the radio to gamma-ray part of the spectrum that the nebula is powered by a pulsar, which converts most of its rotational energy losses into a highly relativistic outflow. This outflow powers a pulsar wind nebula, a region of up to ten light-years across, filled with relativistic electrons and positrons. These particles emit synchrotron photons in the ambient magnetic field and produce very-high-energy gamma rays by Compton up-scattering of ambient low-energy photons. Although the synchrotron morphology of the nebula is well established, it has not been known from which region the very-high-energy gamma rays are emitted(3-8). Here we report that the Crab nebula has an angular extension at gamma-ray energies of 52 arcseconds (assuming a Gaussian source width), much larger than at X-ray energies. This result closes a gap in the multi-wavelength coverage of the nebula, revealing the emission region of the highest-energy gamma rays. These gamma rays enable us to probe a previously inaccessible electron and positron energy range. We find that simulations of the electromagnetic emission reproduce our measurement, providing a non-trivial test of our understanding of particle acceleration in the Crab nebula.
  •  
50.
  • Abdalla, H., et al. (author)
  • Simultaneous observations of the blazar PKS 2155-304 from ultra-violet to TeV energies
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 639, s. 1-13
  • Journal article (peer-reviewed)abstract
    • Here we report the results of the first ever contemporaneous multi-wavelength observation campaign on the BL Lac object PKS 2155-304 involving Swift, NuSTAR, Fermi-LAT, and H.E.S.S. The use of these instruments allows us to cover a broad energy range, which is important for disentangling the different radiative mechanisms. The source, observed from June 2013 to October 2013, was found in a low flux state with respect to previous observations but exhibited highly significant flux variability in the X-rays. The high-energy end of the synchrotron spectrum can be traced up to 40 keV without significant contamination by high-energy emission. A one-zone synchrotron self-Compton model was used to reproduce the broadband flux of the source for all the observations presented here but failed for previous observations made in April 2013. A lepto-hadronic solution was then explored to explain these earlier observational results.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 113
Type of publication
journal article (109)
research review (2)
editorial collection (1)
conference paper (1)
Type of content
peer-reviewed (111)
other academic/artistic (2)
Author/Editor
Devin, J. (65)
Backes, M. (64)
Berge, D. (64)
Lohse, T. (64)
Bolmont, J (64)
Chen, A. (64)
show more...
Brun, F. (64)
Egberts, K. (64)
Fontaine, G. (64)
Giavitto, G. (64)
Jamrozy, M. (64)
Khelifi, B. (64)
Lenain, J. -P (64)
Lypova, I. (64)
Marandon, V. (64)
Moulin, E. (64)
Bulik, T. (63)
Aharonian, F. (63)
Boisson, C. (63)
Funk, S. (63)
Gabici, S. (63)
Glicenstein, J. F. (63)
Grondin, M. -H (63)
Jankowsky, F. (63)
Jung-Richardt, I. (63)
Komin, Nu. (63)
Kosack, K. (63)
Lemiere, A. (63)
de Naurois, M. (63)
Ohm, S. (63)
Ostrowski, M. (63)
Parsons, R. D. (63)
Quirrenbach, A. (63)
Rudak, B. (63)
Sasaki, M. (63)
Schwanke, U. (63)
Wagner, S. J. (63)
Vink, J (62)
Mohrmann, L. (62)
Ernenwein, J. -P (62)
Fiasson, A. (62)
Hinton, J. A. (62)
Holler, M. (62)
Lemoine-Goumard, M. (62)
Moderski, R. (62)
Niemiec, J. (62)
Panter, M. (62)
Renaud, M. (62)
Rieger, F. (62)
Santangelo, A. (62)
show less...
University
Linnaeus University (61)
Stockholm University (35)
Lund University (28)
Uppsala University (22)
Karolinska Institutet (16)
University of Gothenburg (9)
show more...
Royal Institute of Technology (8)
Umeå University (7)
Chalmers University of Technology (4)
Högskolan Dalarna (2)
Swedish University of Agricultural Sciences (2)
Örebro University (1)
Karlstad University (1)
show less...
Language
English (113)
Research subject (UKÄ/SCB)
Natural sciences (81)
Medical and Health Sciences (31)
Social Sciences (2)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view