SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Diaspro A.) "

Sökning: WFRF:(Diaspro A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bazzurro, V., et al. (författare)
  • Involvement of GABA(A) receptors containing alpha(6) subtypes in antisecretory factor activity on rat cerebellar granule cells studied by two-photon uncaging
  • 2022
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 56:5, s. 4505-4513
  • Tidskriftsartikel (refereegranskat)abstract
    • The antisecretory factor (AF) is an endogenous protein that counteracts intestinal hypersecretion and various inflammation conditions in vivo. It has been detected in many mammalian tissues and plasma, but its mechanisms of action are largely unknown. To study the pharmacological action of the AF on different GABA(A) receptor populations in cerebellar granule cells, we took advantage of the two-photon uncaging method as this technique allows to stimulate the cell locally in well-identified plasma membrane parts. We compared the electrophysiological response evoked by releasing a caged GABA compound on the soma, the axon initial segment and neurites before and after administering AF-16, a 16 amino acids long peptide obtained from the amino-terminal end of the AF protein. After the treatment with AF-16, we observed peak current increases of varying magnitude depending on the neuronal region. Thus, studying the effects of furosemide and AF-16 on the electrophysiological behaviour of cerebellar granules, we suggest that GABA(A) receptors, containing the alpha(6) subunit, may be specifically involved in the increase of the peak current by AF, and different receptor subtype distribution may be responsible for differences in this increase on the cell.
  •  
2.
  • Loren, N., et al. (författare)
  • Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice
  • 2015
  • Ingår i: Quarterly Reviews of Biophysics. - : Cambridge University Press (CUP). - 0033-5835 .- 1469-8994. ; 48:3, s. 323-387
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
  •  
3.
  •  
4.
  • Lorén, Niklas, 1970, et al. (författare)
  • Fluorescence recovery after photobleaching in material and life sciences: Putting theory into practice
  • 2015
  • Ingår i: Quarterly Reviews of Biophysics. - 1469-8994 .- 0033-5835. ; 48:3, s. 323-387
  • Tidskriftsartikel (refereegranskat)abstract
    • Copyright © 2015 Cambridge University Press.Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy