SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Digonnet M. J. F.) "

Sökning: WFRF:(Digonnet M. J. F.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frey, B. N., et al. (författare)
  • Cooling Yb-Doped Silica Fibers and Fiber Lasers with Anti-Stokes Pumping
  • 2023
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9781510659797
  • Konferensbidrag (refereegranskat)abstract
    • Optical cooling in Yb-doped silica fibers using anti-Stokes fluorescence has become a subject of great interest in the fiber laser community. This paper provides an update on the development of silica fibers designed specifically to enhance their cooling properties. This growing list includes a new, nearly single-mode fiber with a borophosphosilicate core that produced –65 mK of cooling with only 260 mW of 1040-nm pump power. The silica compositions that have now been successfully cooled at atmospheric pressure by anti-Stokes fluorescence by our team include aluminosilicate, aluminofluorosilicate, borophosphosilicate, and aluminosilicate doped with one of three different alkali-earth nanoparticles (Ba, Sr, and Ca). By fitting the measured temperature dependence of the cooled fiber on pump power, two key parameters that control the degree of cooling are inferred, namely the critical quenching concentration and the absorptive loss due to impurities. The inferred values compiled for the fibers that cooled indicate that the extracted heat is highest when the Yb concentration is 2 wt.% or more (to maximize heat extraction), the Al concentration is ~0.8 wt.% or greater (to reduce quenching), and the absorptive loss is below approximately 15 dB/km, and ideally below 5 dB/km (to minimize heating due to pump absorption). Only two of the reported fibers, an LaF3-doped and an LuF3-doped nanoparticle fiber, did not cool, because their Yb and Al concentrations were not sufficiently high. This analysis shows that through careful composition control (especially the Al and Yb concentrations) and minimization of the OH contamination, a new generation of Yb-doped silica fibers is emerging with higher Yb concentrations, greater resistance to quenching, and lower residual loss than commercial Yb-doped fibers. They can be expected to have a significant impact not only on optically cooled devices but also on a much broader range of fiber lasers and amplifiers. 
  •  
2.
  • Balliu, Enkeleda, PhD student, et al. (författare)
  • High-efficiency radiation-balanced Yb-doped silica fiber laser with 200-mW output
  • 2024
  • Ingår i: Optics Letters. - : Optica Publishing Group. - 0146-9592 .- 1539-4794. ; 49:8, s. 2021-2024
  • Tidskriftsartikel (refereegranskat)abstract
    • The focus of this study was the development of a second generation of fiber lasers internally cooled by anti-Stokes fluorescence. The laser consisted of a length of a single-mode fiber spliced to fiber Bragg gratings to form the optical resonator. The fiber was single-moded at the pump (1040 nm) and signal (1064 nm) wavelengths. Its core was heavily doped with Yb, in the initial form of CaF2 nanoparticles, and co-doped with Al to reduce quenching and improve the cooling efficiency. After optimizing the fiber length (4.1 m) and output-coupler reflectivity (3.3%), the fiber laser exhibited a threshold of 160 mW, an optical efficiency of 56.8%, and a radiation-balanced output power (no net heat generation) of 192 mW. On all three metrics, this performance is significantly better than the only previously reported radiation-balanced fiber laser, which is even more meaningful given that the small size of the single-mode fiber core (7.8-µm diameter). At the maximum output power (∼2 W), the average fiber temperature was still barely above room temperature (428 mK). This work demonstrates that with anti-Stokes pumping, it is possible to induce significant gain and energy storage in a small-core Yb-doped fiber while keeping the fiber cool. 
  •  
3.
  • Knall, J., et al. (författare)
  • Radiation-balanced silica fiber laser
  • 2021
  • Ingår i: Optica. - 2334-2536. ; 8:6, s. 830-833
  • Tidskriftsartikel (refereegranskat)abstract
    • In optically pumped lasers, heat generated by the quantum defect causes detrimental fluctuations in the output mode, frequency, and power. Common heat-mitigation techniques use bulky mechanical coolers that introduce vibrations, leading to laser frequency and amplitude noise. Here, we present a radiation-balanced fiber laser, optically cooled by anti-Stokes fluorescence (ASF). The gain medium is a silica fiber with a 21-µm-diameter core doped with 2.06 wt. % Yb3+ and co-doped with Al2O3 and F- to reduce concentration quenching. The laser was core-pumped at 1040 nm to create both gain at 1065 nm and ASF cooling at atmospheric pressure. We demonstrate a maximum output power of 114 mW with a slope efficiency of 41% while maintaining near-zero average temperature change. This result could enable the development of fiber lasers with unprecedented coherence and stability. 
  •  
4.
  • Balliu, Enkeleda, PhD student, et al. (författare)
  • Improved Closed-Loop Slow-Light Temperature Sensor With Millidegree Resolution for Laser Cooling
  • 2023
  • Ingår i: Proceedings - 28th International Conference on Optical Fiber Sensors, OFS 2023. - : Optica Publishing Group.
  • Konferensbidrag (refereegranskat)abstract
    • For applications such as laser cooling of doped fibers, where it is critical to measure accurately the temperature of a cooled fiber that is very close to room temperature, it is paramount to develop a reliable, very short (mm) fiber temperature sensor with millikelvin resolution and very little drift. We report a second generation of a unique slow-light fiber Bragg grating (FBG) temperature sensor that meets these stringent requirements. Experiments and modeling establish that its temperature response depends only on well-known material constants of the silica FBG and the response of the probe laser's wavelength controller. The response is independent of the linewidth of the slow-light resonance, hence different FBGs and/or resonances have the exact same response. Examples of measured cooling in optically pumped Yb-doped fibers show that more reliable thermal contact with the cooled fiber is obtained by wrapping the FBG and the cooled fiber. 
  •  
5.
  • Ballato, J., et al. (författare)
  • Material approaches to thermal management in advanced fiber lasers and amplifiers
  • 2023
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9781510659797
  • Konferensbidrag (refereegranskat)abstract
    • For as long as light and matter have partnered, impurities have played a role in optical system performance. This remains generally true for photonic heat engines and especially the case for optical refrigeration. Building on the history of light and glass, including the materials development of low loss telecom fibers, this paper briefly discusses the sources of heat generation in materials and all-material means for their reduction. Particularly attention will be paid to active optical fibers and connect thermal management to parasitic optical nonlinearities, both critical to high and low power amplifier and laser systems. 
  •  
6.
  • Meehan, B., et al. (författare)
  • Impact of Yb2+ on the anti-Stokes fluorescence cooling performance of Yb-doped silica fibers
  • 2024
  • Ingår i: Optical Materials Express. - : Optica Publishing Group. - 2159-3930. ; 14:8, s. 2095-2111
  • Tidskriftsartikel (refereegranskat)abstract
    • To unlock the full potential of laser-cooled silica optical fibers, a better understanding of the internal mechanisms of heat generation is required. This work explores ytterbium-doped aluminosilicate fibers produced via industry-standard modified chemical vapor deposition (MCVD) techniques with varied levels of divalent ytterbium to determine their effect on anti-Stokes fluorescence thermal performance. The inclusion of Yb2+ is shown to have a significant negative impact on cooling potential. Yb2+ ions are shown to correlate with heat generation by two distinct mechanisms, absorption and quenching of active Yb3+ ions. This excess heating represents a reduction in quantum efficiency that is detrimental to Yb-doped fiber lasers and amplifiers beyond the laser-cooling application. 
  •  
7.
  • Balliu, Enkeleda, et al. (författare)
  • Predictive comparison of anti-Stokes fluorescence cooling in oxide and non-oxide fiber hosts doped with Er3+, Pr3+, or Yb3
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering.
  • Konferensbidrag (refereegranskat)abstract
    • A comprehensive study was performed to quantify anti-Stokes-fluorescence (ASF) cooling in fibers of various host compositions (telluride, fluorozirconates, fluorophosphates, phosphates, and chalcogenides) doped with Yb3+ or Er3+. Published expressions were used to calculate the maximum heat that can be extracted per unit length and time from a single-mode fiber in the limit of negligible absorptive loss, and the associated cooling efficiency. These expressions consider host- and ion-dependent parameters, namely the absorption and emission cross-section spectra, the radiative and nonradiative lifetimes, and the critical concentration for quenching. Using these expressions with published values for these parameters, the maximum extractable heat was calculated for a large-mode-area fiber (NA = 0.05) doped with either Yb3+ or Er3+ in a variety of hosts. The results show that for a given ion, the maximum heat that can be extracted depends strongly on the host due to the strong dependence of quenching on host composition. In contrast, the cooling efficiency (ratio of extracted heat to pump power absorbed) depends very weakly on the host. The cooling efficiency is also almost twice as high for Er3+ (average of 3.8%) than for Yb3+ (average of 2.2%) due to the larger gap between the pump and mean fluorescence energy in Er3+. Of the limited number of materials for which a full set of data was found in the literature, the highest extractable heat for Yb3+ is in phosphate (-51.5 mW/m), and for Er3+ is in chalcogenide (-10.3 mW/m). This work provides a simple methodology to evaluate the quantitative cooling performance of these and other rare-earth ions in any amorphous host, a procedure that should guide researchers in the selection of optimum materials for ASF cooling of fibers.
  •  
8.
  • Knall, Jennifer M., et al. (författare)
  • Radiation-Balanced Silica Fiber Amplifier
  • 2021
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 127:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report what we believe to be the first radiation-balanced fiber amplifier-a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21-mu m-diameter core highly doped with Yb3+ (2.52 wt. %) and codoped with 2.00 wt. % Al to reduce concentration quenching. The amplifier is core pumped with 1040-nm light to create anti-Stokes fluorescence cooling and gain in the core at 1064 nm. Using a custom slow-light fiber Bragg grating sensor with mK resolution, temperature measurements are performed at multiple locations along the amplifier fiber. A 4.35-m fiber pumped with 2.62 W produced 17 dB of gain, while the average fiber temperature remained slightly below room temperature. This advancement is a fundamental step toward the creation of ultrastable lasers necessary to many applications, especially low-noise sensing and high-precision metrology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy