SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dimitri Klauss) "

Sökning: WFRF:(Dimitri Klauss)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dhakal, Gyanendra, et al. (författare)
  • Anisotropically large anomalous and topological Hall effect in a kagome magnet
  • 2021
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 104:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, kagome materials have become an engrossing platform to study the interplay among symmetry, magnetism, topology, and electron correlation. The latest works on RMn6Sn6 (R = rare-earth metal) compounds have illustrated that this family could be intriguing to investigate various physical phenomena due to large spin-orbit coupling and strong magnetic ordering. However, combined transport and spectroscopic studies in RMn6Sn6 materials are still limited. Here, we report magnetic, magnetotransport, and angle-resolved photoemission spectroscopy measurements of a kagome magnet ErMn6Sn6 that undergoes antiferromagnetic (TN = 345 K) to ferrimagnetic (TC = 68 K) phase transitions in the presence of a field. We observe large anomalous and topological Hall effects serving as transport signatures of the nontrivial Berry curvature. The isothermal magnetization exhibits strong anisotropic nature and the topological Hall effect of the compound depends on the critical field of metamagnetic transition. Our spectroscopic results complemented by theoretical calculations show the multiorbital kagome fermiology. This Letter provides new insight into the tunability and interplay of topology and magnetism in a kagome magnet.
  •  
2.
  • Dhakal, Gyanendra, et al. (författare)
  • Observation of anisotropic Dirac cones in the topological material Ti2Te2P
  • 2022
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 106:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Anisotropic bulk Dirac (or Weyl) cones in three-dimensional systems have recently gained intense research interest as they are examples of materials with tilted Dirac (or Weyl) cones indicating the violation of Lorentz invariance. In contrast, the studies on anisotropic surface Dirac cones in topological materials which contribute to anisotropic carrier mobility have been limited. By employing angle-resolved photoemission spectroscopy and first-principles calculations, we reveal the anisotropic surface Dirac dispersion in a tetradymite material Ti2Te2P on the (001) plane of the Brillouin zone. We observe quasielliptical Fermi pockets at the (M) over bar point of the Brillouin zone forming the anisotropic surface Dirac cones. Our calculations of the Z(2) indices confirm that the system is topologically nontrivial with multiple topological phases in the same material. In addition, the observed nodal-line-like feature formed by bulk bands makes this system topologically rich.
  •  
3.
  • Hosen, M. Mofazzel, et al. (författare)
  • Discovery of topological nodal-line fermionic phase in a magnetic material GdSbTe
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Topological Dirac semimetals with accidental band touching between conduction and valence bands protected by time reversal and inversion symmetry are at the frontier of modern condensed matter research. A majority of discovered topological semimetals are nonmagnetic and conserve time reversal symmetry. Here we report the experimental discovery of an antiferromagnetic topological nodal-line semimetallic state in GdSbTe using angle-resolved photoemission spectroscopy. Our systematic study reveals the detailed electronic structure of the paramagnetic state of antiferromagnetic GdSbTe. We observe the presence of multiple Fermi surface pockets including a diamond-shape, and small circular pockets around the zone center and high symmetry X points of the Brillouin zone (BZ), respectively. Furthermore, we observe the presence of a Dirac-like state at the X point of the BZ and the effect of magnetism along the nodal-line direction. Interestingly, our experimental data show a robust  Dirac-like state both below and above the magnetic transition temperature (TN  = 13 K). Having a relatively high transition temperature, GdSbTe provides an archetypical platform to study the interaction between magnetism and topological states of matter.
  •  
4.
  • Hosen, M. Mofazzel, et al. (författare)
  • Distinct multiple fermionic states in a single topological metal
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the quantum materials that have recently gained interest are the topological insulators, wherein symmetry-protected surface states cross in reciprocal space, and the Dirac nodal-line semimetals, where bulk bands touch along a line in k-space. However, the existence of multiple fermion phases in a single material has not been verified yet. Using angle-resolved photoemission spectroscopy (ARPES) and first-principles electronic structure calculations, we systematically study the metallic material Hf2Te2P and discover properties, which are unique in a single topological quantum material. We experimentally observe weak topological insulator surface states and our calculations suggest additional strong topological insulator surface states. Our first-principles calculations reveal a one-dimensional Dirac crossing—the surface Dirac-node arc—along a high-symmetry direction which is confirmed by our ARPES measurements. This novel state originates from the surface bands of a weak topological insulator and is therefore distinct from the well-known Fermi arcs in semimetals.
  •  
5.
  • Hosen, M. Mofazzel, et al. (författare)
  • Observation of gapless Dirac surface states in ZrGeTe
  • 2018
  • Ingår i: Physical Review B. - : American Physical Society. ; 97:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The experimental discovery of the topological Dirac semimetal establishes a platform to search for various exotic quantum phases in real materials. ZrSiS-type materials have recently emerged as topological nodal-line semimetals where gapped Dirac-like surface states are observed. Here, we present a systematic angle-resolved photoemission spectroscopy (ARPES) study of ZrGeTe, a nonsymmorphic symmetry protected Dirac semimetal. We observe twoDirac-like gapless surface states at the same X point of the Brillouin zone. Our theoretical analysis and first-principles calculations reveal that these are protected by crystalline symmetry. Hence, ZrGeTe appears as a rare example of a naturally fine tuned system where the interplay between symmorphic and nonsymmorphic symmetry leads to rich phenomenology and thus opens up opportunities to investigate the physics of Dirac semimetallic and topological insulating phases realized in a single material.
  •  
6.
  • Hosen, M. Mofazzel, et al. (författare)
  • Tunability of the topological nodal-line semimetal phase in ZrSiX-type materials (X = S, Se, Te)
  • 2017
  • Ingår i: Physical Review B. - 2469-9950 .- 2469-9969. ; 95:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of a topological nodal-line (TNL) semimetal phase in ZrSiS has invigorated the study of other members of this family. Here, we present a comparative electronic structure study of ZrSiX (where X = S, Se, Te) using angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. Our ARPES studies show that the overall electronic structure of ZrSiX materials comprises the diamond-shaped Fermi pocket, the nearly elliptical-shaped Fermi pocket, and a small electron pocket encircling the zone center (Gamma) point, the M point, and the X point of the Brillouin zone, respectively. We also observe a small Fermi surface pocket along the M-Gamma-M direction in ZrSiTe, which is absent in both ZrSiS and ZrSiSe. Furthermore, our theoretical studies show a transition from nodal-line to nodeless gapped phase by tuning the chalcogenide from S to Te in these material systems. Our findings provide direct evidence for the tunability of the TNL phase in ZrSiX material systems by adjusting the spin-orbit coupling strength via the X anion.
  •  
7.
  • Neupane, Madhab, et al. (författare)
  • Observation of topological nodal fermion semimetal phase in ZrSiS
  • 2016
  • Ingår i: PHYSICAL REVIEW B. - 2469-9950. ; 93:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Gamma) point, the M point, and the X point of the BZ, respectively. We experimentally establish the spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy