SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ding JH) "

Sökning: WFRF:(Ding JH)

  • Resultat 1-50 av 67
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
19.
  • Chen, DS, et al. (författare)
  • Single cell atlas for 11 non-model mammals, reptiles and birds
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 7083-
  • Tidskriftsartikel (refereegranskat)abstract
    • The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • 2017
  • swepub:Mat__t
  •  
25.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
26.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
27.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  • Dillman, AA, et al. (författare)
  • Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 16890-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging is a biologically universal event, and yet the key events that drive aging are still poorly understood. One approach to generate new hypotheses about aging is to use unbiased methods to look at change across lifespan. Here, we have examined gene expression in the human dorsolateral frontal cortex using RNA- Seq to populate a whole gene co-expression network analysis. We show that modules of co-expressed genes enriched for those encoding synaptic proteins are liable to change with age. We extensively validate these age-dependent changes in gene expression across several datasets including the publically available GTEx resource which demonstrated that gene expression associations with aging vary between brain regions. We also estimated the extent to which changes in cellular composition account for age associations and find that there are independent signals for cellularity and aging. Overall, these results demonstrate that there are robust age-related alterations in gene expression in the human brain and that genes encoding for neuronal synaptic function may be particularly sensitive to the aging process.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  • Gross, O, et al. (författare)
  • Stem cell therapy for Alport syndrome: the hope beyond the hype
  • 2009
  • Ingår i: Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. - : Oxford University Press (OUP). - 1460-2385. ; 24:3, s. 731-734
  • Tidskriftsartikel (refereegranskat)
  •  
38.
  •  
39.
  • Jelenkovic, A, et al. (författare)
  • Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts
  • 2016
  • Ingår i: Scientific reports. - London, United Kingdom : Springer Science and Business Media LLC. - 2045-2322. ; 6, s. 28496-
  • Tidskriftsartikel (refereegranskat)abstract
    • Height variation is known to be determined by both genetic and environmental factors, but a systematic description of how their influences differ by sex, age and global regions is lacking. We conducted an individual-based pooled analysis of 45 twin cohorts from 20 countries, including 180,520 paired measurements at ages 1–19 years. The proportion of height variation explained by shared environmental factors was greatest in early childhood, but these effects remained present until early adulthood. Accordingly, the relative genetic contribution increased with age and was greatest in adolescence (up to 0.83 in boys and 0.76 in girls). Comparing geographic-cultural regions (Europe, North-America and Australia and East-Asia), genetic variance was greatest in North-America and Australia and lowest in East-Asia, but the relative proportion of genetic variation was roughly similar across these regions. Our findings provide further insights into height variation during childhood and adolescence in populations representing different ethnicities and exposed to different environments.
  •  
40.
  •  
41.
  •  
42.
  • Kilpelainen, TO, et al. (författare)
  • Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity
  • 2019
  • Ingår i: Nature communications. - London : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 376-
  • Tidskriftsartikel (refereegranskat)abstract
    • Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
  •  
43.
  •  
44.
  •  
45.
  • Kurki, MI, et al. (författare)
  • FinnGen provides genetic insights from a well-phenotyped isolated population
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 613:7944, s. 508-
  • Tidskriftsartikel (refereegranskat)abstract
    • Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10–11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  • Okada, Yukinori, et al. (författare)
  • Genetics of rheumatoid arthritis contributes to biology and drug discovery
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 506:7488, s. 376-381
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)(1). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating similar to 10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2-4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation(5), cis-acting expression quantitative trait loci(6) and pathway analyses(7-9)-as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes-to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 67

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy