SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dinsmore Kerry) "

Sökning: WFRF:(Dinsmore Kerry)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dinsmore, Kerry, et al. (författare)
  • Contrasting CO2 concentration discharge dynamics in headwater streams : a multi-catchment comparison
  • 2013
  • Ingår i: Journal of Geophysical Research-Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 118:2, s. 445-461
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquatic CO2 concentrations are highly variable and strongly linked to discharge, but until recently, measurements have been largely restricted to low-frequency manual sampling. Using new in situ CO2 sensors, we present concurrent, high-frequency (<30 min resolution) CO2 concentration and discharge data collected from five catchments across Canada, UK, and Fennoscandinavia to explore concentration-discharge dynamics; we also consider the relative importance of high flows to lateral aquatic CO2 export. The catchments encompassed a wide range of mean CO2 concentrations (0.73–3.05 mg C L−1) and hydrological flow regimes from flashy peatland streams to muted outflows within a Finnish lake system. In three of the catchments, CO2 concentrations displayed clear bimodal distributions indicating distinct CO2 sources. Concentration-discharge relationships were not consistent across sites with three of the catchments displaying a negative relationship and two catchments displaying a positive relationship. When individual high flow events were considered, we found a strong correlation between both the average magnitude of the hydrological and CO2 response peaks, and the average response lag times. An analysis of lateral CO2 export showed that in three of the catchments, the top 30% of flow (i.e., flow that was exceeded only 30% of the time) had the greatest influence on total annual load. This indicates that an increase in precipitation extremes (greater high-flow contributions) may have a greater influence on the flushing of CO2 from soils to surface waters than a long-term increase in mean annual precipitation, assuming source limitation does not occur.
  •  
2.
  •  
3.
  • Fisher, Rebecca E., et al. (författare)
  • Measurement of the C-13 isotopic signature of methane emissions from northern European wetlands
  • 2017
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 31:3, s. 605-623
  • Tidskriftsartikel (refereegranskat)abstract
    • Isotopic data provide powerful constraints on regional and global methane emissions and their source profiles. However, inverse modeling of spatially resolved methane flux is currently constrained by a lack of information on the variability of source isotopic signatures. In this study, isotopic signatures of emissions in the Fennoscandian Arctic have been determined in chambers over wetland, in the air 0.3 to 3m above the wetland surface and by aircraft sampling from 100m above wetlands up to the stratosphere. Overall, the methane flux to atmosphere has a coherent delta C-13 isotopic signature of -71 +/- 1%, measured in situ on the ground in wetlands. This is in close agreement with delta C-13 isotopic signatures of local and regional methane increments measured by aircraft campaigns flying through air masses containing elevated methane mole fractions. In contrast, results from wetlands in Canadian boreal forest farther south gave isotopic signatures of -67 +/- 1%. Wetland emissions dominate the local methane source measured over the European Arctic in summer. Chamber measurements demonstrate a highly variable methane flux and isotopic signature, but the results from air sampling within wetland areas show that emissions mix rapidly immediately above the wetland surface and methane emissions reaching the wider atmosphere do indeed have strongly coherent C isotope signatures. The study suggests that for boreal wetlands (>60 degrees N) global and regional modeling can use an isotopic signature of -71 parts per thousand to apportion sources more accurately, but there is much need for further measurements over other wetlands regions to verify this.
  •  
4.
  • Johnson, Mark S., et al. (författare)
  • Direct and continuous measurements of dissolved carbon dioxide in freshwater aquatic systems : method and applications
  • 2010
  • Ingår i: Ecohydrology. - : Wiley. - 1936-0584 .- 1936-0592. ; 3:1, s. 68-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding of the processes that control CO2 concentrations in the aquatic environment has been hampered by the absence of a direct method to make continuous measurements over both short- and long-term time intervals. We describe an in situ method in which a non-dispersive infrared (NDIR) sensor is enclosed in a water impermeable, gas permeable polytetrafluoroethylene (PTFE) membrane and deployed in a freshwater environment. This allows measurements of CO2 concentration to be made directly at a specific depth in the water column without the need for pumps or reagents. We demonstrate the potential of the method using examples from different aquatic environments characterized by a range of CO2 concentrations (0·5–8·0 mg CO2-C l−1, equivalent to ca 40–650 µmol CO2 l−1). These comprise streams and ponds from tropical, temperate and boreal regions. Data derived from the sensor was compared with direct measurements of CO2 concentrations using headspace analysis. Sensor performance following long-term (>6 months) field deployment conformed to manufacturers' specifications, with no drift detected. We conclude that the sensor-based method is a robust, accurate and responsive method, with a wide range of potential applications, particularly when combined with other in situ sensor-based measurements of related variables.
  •  
5.
  • Koebsch, Franziska, et al. (författare)
  • Refining the role of phenology in regulating gross ecosystem productivity across European peatlands
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:2, s. 876-887
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of plant phenology as a regulator for gross ecosystem productivity (GEP) in peatlands is empirically not well constrained. This is because proxies to track vegetation development with daily coverage at the ecosystem scale have only recently become available and the lack of such data has hampered the disentangling of biotic and abiotic effects. This study aimed at unraveling the mechanisms that regulate the seasonal variation in GEP across a network of eight European peatlands. Therefore, we described phenology with canopy greenness derived from digital repeat photography and disentangled the effects of radiation, temperature and phenology on GEP with commonality analysis and structural equation modeling. The resulting relational network could not only delineate direct effects but also accounted for possible effect combinations such as interdependencies (mediation) and interactions (moderation). We found that peatland GEP was controlled by the same mechanisms across all sites: phenology constituted a key predictor for the seasonal variation in GEP and further acted as a distinct mediator for temperature and radiation effects on GEP. In particular, the effect of air temperature on GEP was fully mediated through phenology, implying that direct temperature effects representing the thermoregulation of photosynthesis were negligible. The tight coupling between temperature, phenology and GEP applied especially to high latitude and high altitude peatlands and during phenological transition phases. Our study highlights the importance of phenological effects when evaluating the future response of peatland GEP to climate change. Climate change will affect peatland GEP especially through changing temperature patterns during plant phenologically sensitive phases in high latitude and high altitude regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy