SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Distl Ottmar) "

Sökning: WFRF:(Distl Ottmar)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Felkel, Sabine, et al. (författare)
  • The horse Y chromosome as an informative marker for tracing sire lines
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of the Y chromosome is the best-established way to reconstruct paternal family history in humans. Here, we applied fine-scaled Y-chromosomal haplotyping in horses with biallelic markers and demonstrate the potential of our approach to address the ancestry of sire lines. We de novo assembled a draft reference of the male-specific region of the Y chromosome from Illumina short reads and then screened 5.8 million basepairs for variants in 130 specimens from intensively selected and rural breeds and nine Przewalski's horses. Among domestic horses we confirmed the predominance of a young'crown haplogroup' in Central European and North American breeds. Within the crown, we distinguished 58 haplotypes based on 211 variants, forming three major haplogroups. In addition to two previously characterised haplogroups, one observed in Arabian/Coldblooded and the other in Turkoman/Thoroughbred horses, we uncovered a third haplogroup containing Iberian lines and a North African Barb Horse. In a genealogical showcase, we distinguished the patrilines of the three English Thoroughbred founder stallions and resolved a historic controversy over the parentage of the horse 'Galopin', born in 1872. We observed two nearly instantaneous radiations in the history of Central and Northern European Y-chromosomal lineages that both occurred after domestication 5,500 years ago.
  •  
2.
  • McCue, Molly E., et al. (författare)
  • A High Density SNP Array for the Domestic Horse and Extant Perissodactyla : Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies
  • 2012
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 8:1, s. e1002451-
  • Tidskriftsartikel (refereegranskat)abstract
    • An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of similar to 43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50-100 kb and reached background levels within 1-2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of similar to 750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species.
  •  
3.
  • Metzger, Julia, et al. (författare)
  • Genome data uncover four synergistic key regulators for extremely small body size in horses
  • 2018
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Miniature size in horses represents an extreme reduction of withers height that originated after domestication. In some breeds, it is a highly desired trait representing a breed- or subtype-specific feature. The genomic changes that emerged due to strong-targeted selection towards this distinct type remain unclear.Results: Comparisons of whole-genome sequencing data from two Miniature Shetland ponies and one standard-sized Shetland pony, performed to elucidate genetic determinants for miniature size, revealed four synergistic variants, limiting withers height to 34.25 in. (87 cm). Runs of homozygosity regions were detected spanning these four variants in both the Miniature Shetland ponies and the standard-sized Shetland pony. They were shown to be characteristic of the Shetland pony breed, resulting in a miniature type under specific genotypic combinations. These four genetic variants explained 72% of the size variation among Shetland ponies and related breeds. The length of the homozygous regions indicate that they arose over 1000 years ago. In addition, a copy number variant was identified in DIAPH3 harboring a loss exclusively in ponies and donkeys and thus representing a potential height-associated variant.Conclusion: This study reveals main drivers for miniature size in horses identified in whole genome data and thus provides relevant candidate genes for extremely short stature in mammals.
  •  
4.
  • Wallner, Barbara, et al. (författare)
  • Y Chromosome Uncovers the Recent Oriental Origin of Modern Stallions
  • 2017
  • Ingår i: Current Biology. - : CELL PRESS. - 0960-9822 .- 1879-0445. ; 27:13, s. 2029-2035
  • Tidskriftsartikel (refereegranskat)abstract
    • The Y chromosome directly reflects male genealogies, but the extremely low Y chromosome sequence diversity in horses has prevented the reconstruction of stallion genealogies [1, 2]. Here, weresolve the first Y chromosomegenealogy of modern horses by screening 1.46 Mb of the male-specific region of the Y chromosome (MSY) in 52 horses from 21 breeds. Based on highly accurate pedigree data, we estimated the de novo mutation rate of the horse MSY and showed that various modern horse Y chromosome lineages split much later than the domestication of the species. Apart from few private northern European haplotypes, all modern horse breeds clustered together in a roughly 700-year-old haplogroup that was transmitted to Europe by the import of Oriental stallions. The Oriental horse group consisted of two major subclades: the Original Arabian lineage and the Turkoman horse lineage. We show that the English Thoroughbred MSY was derived from the Turkoman lineage and that English Thoroughbred sires are largely responsible for the predominance of this haplotype in modern horses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy