SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Djurabekova F.) "

Sökning: WFRF:(Djurabekova F.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Malerba, L., et al. (författare)
  • Comparison of empirical interatomic potentials for iron applied to radiation damage studies
  • 2010
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 406:1, s. 19-38
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of four recent semi-empirical interatomic potentials for iron, developed or used within the FP6 Perfect Project, is evaluated by comparing them between themselves and with available experimental or, more often, density functional theory data. The quantities chosen for the comparison are of specific interest for radiation damage studies, i.e. they concern mainly properties of point-defects and their clusters, as well as dislocations. For completeness, an earlier, widely used (also within the Project) iron potential is included in the comparison exercise as well. This exercise allows conclusions to be drawn about the reliability of the available potentials, while providing a snapshot of the state-of-the-art concerning fundamental properties of iron, thereby being also useful as a kind of handbook and as a framework for the validation of future semi-empirical interatomic potentials for iron. It is found that Mendelev-type potentials are currently the best choice in order to "extend density functional theory" to larger scales and this justifies their widespread use, also for the development of iron alloy potentials. However, a fully reliable description of self-interstitial atom clusters and dislocations with interatomic potentials remains largely an elusive objective, that calls for further effort within the concerned scientific community.
  •  
2.
  • Djurabekova, F., et al. (författare)
  • Kinetics versus thermodynamics in materials modeling : The case of the di-vacancy in iron
  • 2010
  • Ingår i: Philosophical Magazine. - : Informa UK Limited. - 1478-6435 .- 1478-6443. ; 90:19, s. 2585-2595
  • Tidskriftsartikel (refereegranskat)abstract
    • Monte Carlo models are widely used for the study of microstructural and microchemical evolution of materials under irradiation. However, they often link explicitly the relevant activation energies to the energy difference between local equilibrium states. We provide a simple example (di-vacancy migration in iron) in which a rigorous activation energy calculation, by means of both empirical interatomic potentials and density functional theory methods, clearly shows that such a link is not granted, revealing a migration mechanism that a thermodynamics-linked activation energy model cannot predict. Such a mechanism is, however, fully consistent with thermodynamics. This example emphasizes the importance of basing Monte Carlo methods on models where the activation energies are rigorously calculated, rather than deduced from widespread heuristic equations.
  •  
3.
  • Ghaemi, M., et al. (författare)
  • Growth of Nb films on Cu for superconducting radio frequency cavities by direct current and high power impulse magnetron sputtering: A molecular dynamics and experimental study
  • 2024
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 476
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of superconducting radio frequency (rf) cavities in particle accelerators necessitates that copper (Cu) surfaces are coated by thin niobium (Nb) films, predominantly synthesized by magnetron sputtering. A key feature of the rf cavities is that they exhibit a complex three-dimensional geometry, such that during Nb film growth vapor is not deposited on a flat substrate. The latter, combined with the line-of-sight nature of the deposition flux in conventional magnetron sputtering methods (including direct current magnetron sputtering; DCMS) yields films with porous columnar morphologies on surfaces of the cavities that do not face the magnetron source. High-power impulse magnetron sputtering (HiPIMS) is a variant of sputtering that generates highly-ionized fluxes. Using electrical fields, such fluxes can be deflected to trajectories that are closer to the substrate normal and, thereby, dense and uniform layers can be deposited on all surfaces of the rf cavities. In the present work, we use classical molecular dynamics simulations to model Nb film growth on Cu substrates at conditions consistent with those prevailing during DCMS and HiPIMS. Our computational results are in qualitative agreement with experimental data (also generated in the present study), with respect to film morphology. Based on this agreement and by studying the evolution of the simulated systems, we suggest that the morphology of HiPIMS-grown films (as compared to their DCMS counterparts) is the result of the combined effects of deflection of ionized sputtered particles to trajectories parallel to the substrate normal, bombardment-induced interruption of crystal growth, and ballistic atomic rearrangement along with dynamic thermal annealing caused by energetic film-forming species. Moreover, the predictions of our model with respect to dynamic processes at the film-substrate interface and their effect on local epitaxial growth are discussed.
  •  
4.
  • Lopez-Cazalilla, A., et al. (författare)
  • Effect of surface orientation on blistering of copper under high fluence keV hydrogen ion irradiation
  • 2024
  • Ingår i: Acta Materialia. - : Elsevier BV. - 1359-6454 .- 1873-2453. ; 266
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper and hydrogen are among the most common elements that are widely used in industrial and fundamental research applications. Copper surfaces are often exposed to hydrogen in the form of charged ions. The hydrogen ions can accelerate towards the surface, resulting in an accumulation of hydrogen below the surface. Harmless in low concentrations, prolonged hydrogen exposure can lead to dramatic changes on copper surfaces. This effect is visible to the naked eye in the form of blisters densely covering the exposed surface. Blisters are structural modifications that can affect the physical properties of the surface including, for example, vacuum dielectric strength. Using scanning electron microscopy we found that the blistering of the irradiated polycrystalline copper surface does not grow uniformly with ion fluence. Initially, only some grains exhibit blisters, while others remain intact. Our experiments indicate that grains with the {100} orientation are the most prone to blistering, while the grains oriented in the {110} are the most resistant to it. Moreover, we noticed that blisters assume different shapes correlating with specific grain orientation. Good agreement of experiments with the atomistic simulations explains the difference in the shapes of the blisters by specific behavior of dislocations within the FCC crystal structure. Moreover, our simulations reveal the correlation of the delay in blister formation on surfaces with certain orientations compared to the others with the dependence of the hydrogen penetration depth and the depth and amount of vacancies in copper on the orientation of the irradiated surface.
  •  
5.
  • Pohjonen, A. S., et al. (författare)
  • Dislocation nucleation on a near surface void leading to surface protrusion growth under an external electric field
  • 2013
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 114:3, s. 033519-
  • Tidskriftsartikel (refereegranskat)abstract
    • The stress exerted on a conducting material surface by an external electric field can cause plastic deformation if the stress is concentrated somewhere in the material. Such concentration can occur due to the presence of a near surface void. The plastic deformation can lead to growth of a protrusion on the surface. To investigate the conditions where such a mechanism can operate, we employ concurrent electrodynamics-molecular dynamics simulations, analyze the distribution of stress near the void by using both the molecular dynamics and finite element method, and compare the result to the analytical expression for a void located deep in the bulk. By applying an electric field of exaggerated strength we are able to simulate the plastic deformation process within the timespan allowed by molecular dynamics simulations. In reality, longer timespans would allow for the initiation of the proposed mechanism at electric field strengths much lower than the values assumed for the simulations in the present work.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy