SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dokhane A.) "

Sökning: WFRF:(Dokhane A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dokhane, A., et al. (författare)
  • Analysis of Oskarshamn-2 stability event using TRACE/SIMULATE-3K and comparison to TRACE/PARCS and SIMULATE-3K stand-alone
  • 2017
  • Ingår i: Annals of Nuclear Energy. - : Elsevier. - 0306-4549 .- 1873-2100. ; 102, s. 190-199
  • Tidskriftsartikel (refereegranskat)abstract
    • With the goal to enhance the capability to perform best-estimate simulations of Light Water Reactors (LWRs) transients, with strong coupling between core neutronics and plant thermal-hydraulic, a coupling between TRACE and SIMULATE-3K (TS3K) was developed in collaboration between PSI and Studsvik for analyses involving interactions between system and core. In order to verify the coupling scheme and the coupled code capabilities to simulate complex transients, the OECD/NEA Oskarshmn-2 (O-2) Stability benchmark was modeled with the coupled code TS3K. The main goal of this paper is to present TS3K analyses of the Oskarshamn-2 stability event, noting that this constitutes the first reported assessment of this code system for a BWR stability problem. A systematic analysis is carried out using different time-space discretization schemes in order to identify an optimized methodology to simulate correctly the O-2 stability event. In this context, the TS3K results are compared to the available benchmark data both for steady-state and transient conditions. The results show that using a refined model in space and time, the TS3K model can successfully capture the entire behavior of the transient qualitatively, i.e. onset of the instability with growing oscillation amplitudes, as well as quantitatively, i.e. Decay Ratio and resonance frequency. In addition, the results are compared also to those obtained using TRACE/PARCS and S3K stand-alone, which allows a systematic comparison between different codes.
  •  
2.
  • Vidal, Antoni, et al. (författare)
  • Modelling and simulations of reactor neutron noise induced by mechanical vibrations
  • 2022
  • Ingår i: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 177
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical vibrations of core internals are among the main perturbations that induce oscillations in the neutron flux field, also known as neutron noise. In this work, different simulation models for the study of the influence of the mechanical vibrations of fuel assemblies on the neutron flux in the reactor core have been discussed. These methodologies employ the diffusion approximation, with or without a previous homogenization model, to simulate the neutron noise in the time or the frequency domain. The diffusion-based approach is expected to be less accurate in the vicinity of the vibrating fuel assemblies, but correct when considering distances larger than a few diffusion lengths away from the perturbation. All methodologies provide consistent results and can reproduce typical features of the neutron noise induced by mechanical vibrations of core components. First, FEMFFUSION can perform simulations in both the time and frequency domains. Second, CORE SIM + can be used to study various neutron noise scenarios in realistic three-dimensional reactor configurations. The third methodology is centred on using commercial codes as CASMO-5, SIMULATE-3 and SIMULATE-3K. This methodology allows time domain simulations of the neutron noise induced by different neutron noise sources in a nuclear reactor. Finally, a model for time-dependent geometry is implemented for the code system ATHLET/QUABOX-CUBBOX employing a cross-section-based approach for encoding water gap width variations at the reflector.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy