SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dokmeci Mehmet R.) "

Sökning: WFRF:(Dokmeci Mehmet R.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rabiee, Navid, et al. (författare)
  • Green Biomaterials : fundamental principles
  • 2023
  • Ingår i: Green Biomaterials. - : Taylor & Francis. - 2993-4168. ; 1:1, s. 1-4
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Massa, Solange, et al. (författare)
  • Bioprinted 3D vascularized tissue model for drug toxicity analysis
  • 2017
  • Ingår i: Biomicrofluidics. - : AIP Publishing. - 1932-1058. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • To develop biomimetic three-dimensional (3D) tissue constructs for drug screening and biological studies, engineered blood vessels should be integrated into the constructs to mimic the drug administration process in vivo. The development of perfusable vascularized 3D tissue constructs for studying the drug administration process through an engineered endothelial layer remains an area of intensive research. Here, we report the development of a simple 3D vascularized liver tissue model to study drug toxicity through the incorporation of an engineered endothelial layer. Using a sacrificial bioprinting technique, a hollow microchannel was successfully fabricated in the 3D liver tissue construct created with HepG2/C3A cells encapsulated in a gelatin methacryloyl hydrogel. After seeding human umbilical vein endothelial cells (HUVECs) into the microchannel, we obtained a vascularized tissue construct containing a uniformly coated HUVEC layer within the hollow microchannel. The inclusion of the HUVEC layer into the scaffold resulted in delayed permeability of biomolecules into the 3D liver construct. In addition, the vascularized construct containing the HUVEC layer showed an increased viability of the HepG2/C3A cells within the 3D scaffold compared to that of the 3D liver constructs without the HUVEC layer, demonstrating a protective role of the introduced endothelial cell layer. The 3D vascularized liver model presented in this study is anticipated to provide a better and more accurate in vitro liver model system for future drug toxicity testing. Published by AIP Publishing.
  •  
3.
  • Shin, Su Ryon, et al. (författare)
  • Cell-laden Microengineered and Mechanically Tunable Hybrid Hydrogels of Gelatin and Graphene Oxide
  • 2013
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 25:44, s. 6385-6391
  • Tidskriftsartikel (refereegranskat)abstract
    • Incorporating graphene oxide inside GelMA hydrogels enhances their mechanical properties and reduces UV-induced cell damage while preserving their favorable characteristics for 3D cell encapsulation. NIH-3T3 fibroblasts encapsulated in GO-GelMA microgels demonstrate excellent cellular viability, proliferation, spreading, and alignment. GO reinforcement combined with a multi-stacking approach offers a facile engineering strategy for the construction of complex artificial tissues.
  •  
4.
  • Shin, Su Ryon, et al. (författare)
  • Electrically Driven Microengineered Bioinspired Soft Robots
  • 2018
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 30:10
  • Tidskriftsartikel (refereegranskat)abstract
    • To create life-like movements, living muscle actuator technologies have borrowed inspiration from biomimetic concepts in developing bioinspired robots. Here, the development of a bioinspired soft robotics system, with integrated self-actuating cardiac muscles on a hierarchically structured scaffold with flexible gold microelectrodes is reported. Inspired by the movement of living organisms, a batoid-fish-shaped substrate is designed and reported, which is composed of two micropatterned hydrogel layers. The first layer is a poly(ethylene glycol) hydrogel substrate, which provides a mechanically stable structure for the robot, followed by a layer of gelatin methacryloyl embedded with carbon nanotubes, which serves as a cell culture substrate, to create the actuation component for the soft body robot. In addition, flexible Au microelectrodes are embedded into the biomimetic scaffold, which not only enhance the mechanical integrity of the device, but also increase its electrical conductivity. After culturing and maturation of cardiomyocytes on the biomimetic scaffold, they show excellent myofiber organization and provide self-actuating motions aligned with the direction of the contractile force of the cells. The Au microelectrodes placed below the cell layer further provide localized electrical stimulation and control of the beating behavior of the bioinspired soft robot.
  •  
5.
  • Shin, Su Ryon, et al. (författare)
  • Layer-by-Layer Assembly of 3D Tissue Constructs with Functionalized Graphene
  • 2014
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 24:39, s. 6136-6144
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon-based nanomaterials have been considered promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle-incorporated cell culture substrates, but only a limited number of studies have been reported on the development of 3D tissue constructs using these nanomaterials. Here, a novel approach to engineer 3D multilayer constructs using layer-by-layer (LbL) assembly of cells separated with self-assembled graphene oxide (GO)-based thin films is presented. The GO-based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multilayer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multilayer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co-culture of cardiomyocytes and other cell types. In this work, the fabrication of stand-alone multilayer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties is demonstrated. Therefore, this LbL-based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity.
  •  
6.
  • Zhu, Yangzhi, et al. (författare)
  • A Microfluidic Contact Lens to Address Contact Lens-Induced Dry Eye
  • 2023
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 19:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The contact lens (CL) industry has made great strides in improving CL-wearing experiences. However, a large amount of CL wearers continue to experience ocular dryness, known as contact lens-induced dry eye (CLIDE), stemming from the reduction in tear volume, tear film instability, increased tear osmolarity followed by inflammation and resulting in ocular discomfort and visual disturbances. In this article, to address tear film thinning between the CL and the ocular surface, the concept of using a CL with microchannels to deliver the tears from the pre-lens tear film (PrLTF) to the post-lens ocular surface using in vitro eye-blink motion is investigated. This study reports an eye-blink mimicking system with microfluidic poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogel with integrated microchannels to demonstrate eye-blink assisted flow through microchannels. This in vitro experimental study provides a proof-of-concept result that tear transport from PrLTF to post-lens tear film can be enhanced by an artificial eyelid motion in a pressure range of 0.1–5 kPa (similar to human eyelid pressure) through poly(HEMA) microchannels. Simulation is conducted to support the hypothesis. This work demonstrates the feasibility of developing microfluidic CLs with the potential to help prevent or minimize CLIDE and discomfort by the enhanced transport of pre-lens tears to the post-lens ocular surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy