SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dominko R.) "

Sökning: WFRF:(Dominko R.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Palacin, M. R., et al. (författare)
  • Roadmap on multivalent batteries
  • 2024
  • Ingår i: JPhys Energy. - 2515-7655. ; 6:3
  • Forskningsöversikt (refereegranskat)abstract
    • Battery technologies based in multivalent charge carriers with ideally two or three electrons transferred per ion exchanged between the electrodes have large promises in raw performance numbers, most often expressed as high energy density, and are also ideally based on raw materials that are widely abundant and less expensive. Yet, these are still globally in their infancy, with some concepts (e.g. Mg metal) being more technologically mature. The challenges to address are derived on one side from the highly polarizing nature of multivalent ions when compared to single valent concepts such as Li+ or Na+ present in Li-ion or Na-ion batteries, and on the other, from the difficulties in achieving efficient metal plating/stripping (which remains the holy grail for lithium). Nonetheless, research performed to date has given some fruits and a clearer view of the challenges ahead. These include technological topics (production of thin and ductile metal foil anodes) but also chemical aspects (electrolytes with high conductivity enabling efficient plating/stripping) or high-capacity cathodes with suitable kinetics (better inorganic hosts for intercalation of such highly polarizable multivalent ions). This roadmap provides an extensive review by experts in the different technologies, which exhibit similarities but also striking differences, of the current state of the art in 2023 and the research directions and strategies currently underway to develop multivalent batteries. The aim is to provide an opinion with respect to the current challenges, potential bottlenecks, and also emerging opportunities for their practical deployment.
  •  
2.
  • Ponrouch, A., et al. (författare)
  • Multivalent rechargeable batteries
  • 2019
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297 .- 2405-8289. ; 20, s. 253-262
  • Forskningsöversikt (refereegranskat)abstract
    • Rechargeable battery technologies based on the use of metal anodes coupled to multivalent charge carrier ions (such as Mg 2+ , Ca 2+ or Al 3+ ) have the potential to deliver breakthroughs in energy density radically leap-frogging the current state-of-the-art Li-ion battery technology. However, both the use of metal anodes and the migration of multivalent ions, within the electrolyte and the electrodes, are technological bottlenecks which make these technologies, all at different degrees of maturity, not yet ready for practical applications. Moreover, the know-how gained during the many years of development of the Li-ion battery is not always transferable. This perspective paper reviews the current status of these multivalent battery technologies, describing issues and discussing possible routes to overcome them. Finally, a brief section about future perspectives is given.
  •  
3.
  • Ahmad Ishfaq, Hafiz, 1995, et al. (författare)
  • Enhanced performance of lithium metal batteries via cyclic fluorinated ether based electrolytes
  • 2024
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • To address the challenges associated with applying high-voltage cathodes in lithium metal batteries (LMBs) there is a need for new electrolytes enabling stable interphases at both electrodes. Here we attack this by using a dioxolane-derived cyclic fluorinated ether, 2,2-bis(trifluoromethyl)-1,3-dioxolane (BTFD), as a fluorinated diluent to a 1,2-dimethoxyethane (DME) based electrolyte. The cells using the resulting BTFD-based electrolytes exhibit higher Coulombic efficiencies for lithium stripping and plating as compared to those using the non-fluorinated ether-based electrolyte. This originates from the reduced formation of ‘dead Li’ at the anode, as shown by using electrochemical impedance spectroscopy (EIS). In practice, the BTFD-based electrolytes are shown to improve the performance of Li||NMC cells, which is due to the formation of a predominantly inorganic cathode electrolyte interphase (CEI) that suppresses the cathode degradation during cycling. We used X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) to characterize the CEIs’ overall composition and structure. To obtain more details on the CEI speciation, Raman and nuclear magnetic resonance (NMR) spectroscopies were employed, assisted by molecular level computations. Overall, we demonstrate how the very design of the electrolyte composition influences the performance of LMBs.
  •  
4.
  • Amici, Julia, et al. (författare)
  • A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • This roadmap presents the transformational research ideas proposed by "BATTERY 2030+," the European large-scale research initiative for future battery chemistries. A "chemistry-neutral" roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this "chemistry neutral" approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created.
  •  
5.
  • Bitenc, J., et al. (författare)
  • Electrochemical Mechanism of Al Metal-Organic Battery Based on Phenanthrenequinone
  • 2021
  • Ingår i: Energy Material Advances. - : American Association for the Advancement of Science (AAAS). - 2097-1133 .- 2692-7640. ; 2021
  • Tidskriftsartikel (refereegranskat)abstract
    • Al metal-organic batteries are a perspective high-energy battery technology based on abundant materials. However, the practical energy density of Al metal-organic batteries is strongly dependent on its electrochemical mechanism. Energy density is mostly governed by the nature of the aluminium complex ion and utilization of redox activity of the organic group. Although organic cathodes have been used before, detailed study of the electrochemical mechanism is typically not the primary focus. In the present work, electrochemical mechanism of Al metal-phenanthrenequinone battery is investigated with a range of different analytical techniques. Firstly, its capacity retention is optimized through the preparation of insoluble cross-coupled polymer, which exemplifies extremely low capacity fade and long-term cycling stability. Ex situ and operando ATR-IR confirm that reduction of phenanthrenequinone group proceeds through the two-electron reduction of carbonyl groups, which was previously believed to exchange only one-electron, severely limiting cathode capacity. Nature of aluminium complex ion interacting with organic cathode is determined through multiprong approach using SEM-EDS, XPS, and solid-state NMR, which all point to the dominant contribution of AlCl2+ cation. Upon full capacity utilization, Al metal-polyphenanthrenequinone battery utilizing AlCl2+ offers an energy density of more than 200Wh/kg making it a viable solution for stationary electrical energy storage.
  •  
6.
  • Drvarič Talian, Sara, et al. (författare)
  • Fluorinated Ether Based Electrolyte for High-Energy Lithium-Sulfur Batteries: Li+ Solvation Role behind Reduced Polysulfide Solubility
  • 2017
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 29:23, s. 10037-10044
  • Tidskriftsartikel (refereegranskat)abstract
    • By employing new electrolytes, the polysulfide shuttle phenomenon, one of the main problems of lithium-sulfur (Li-S) batteries, can be significantly reduced. Here we present excellent Coulombic efficiencies as well as adequate performance of high-energy Li-S cells by the use of a fluorinated ether (TFEE) based electrolyte at low electrolyte loading. The observed altered discharge profile was investigated both by electrochemical experiments and an especially tailored COSMO-RS computational approach, while the details of the discharge mechanism were elucidated by two operando techniques: XANES and UV-vis spectroscopy. A significant decrease of polysulfide solubility compared to tetraglyme is due to different Li+ solvation mode.
  •  
7.
  • Johansson, Patrik, 1969, et al. (författare)
  • EUROLIS - European lithium sulphur cells for automotive applications
  • 2014
  • Ingår i: 2013 World Electric Vehicle Symposium and Exhibition, EVS 2014. ; , s. Art. no. 6914915-
  • Konferensbidrag (refereegranskat)abstract
    • EUROLIS is a European project started in October 2012 aimed at sustainable and advanced lithium sulphur (Li-S) batteries for automotive use with highly improved energy densities compared to today's Li-ion (LiB) technology. The combination of the promises of a Li-S battery based energy storage and the inexpensive and abundant materials used in the concept makes this research strategically valuable for Europe. Here we outline the basics of the Li-S battery concept, the main goals of EUROLiS and the partners involved, and how we aim to achieve the main goals.
  •  
8.
  • Josef, Elinor, et al. (författare)
  • Ionic Liquids and Their Polymers in Lithium-Sulfur Batteries
  • 2019
  • Ingår i: Israel Journal of Chemistry. - : Wiley. - 0021-2148 .- 1869-5868. ; 59:9, s. 832-842
  • Forskningsöversikt (refereegranskat)abstract
    • Future optimized lithium-sulfur batteries may promise higher energy densities than the current standard. However, there are many barriers which hinder their commercialization. In this review we describe how ionic liquids (ILs) and their polymers are utilized in different components of the battery to address some of these issues. For example, IL-based electrolytes have the potential to reduce the solubility of polysulfides compared to conventional organic electrolytes. Polymerizing ILs directly on the surface of the Li-metal anode is suggested as an approach to protect the surface of this electrode. Finally, using poly(ionic liquids) (PILs) as binders for the cathode active material may increase the performance of the cathode as compared to polyvinylidene difluoride (PVdF) and could inhibit swelling-induced degradation. These results demonstrate the advantages of ILs and their polymers for improving the performance of Li−S batteries.
  •  
9.
  •  
10.
  • Lindahl, Niklas, 1981, et al. (författare)
  • Aluminum Metal-Organic Batteries with Integrated 3D Thin Film Anodes
  • 2020
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 30:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Aluminum 3D thin film anodes fully integrated with a separator are fabricated by sputtering and enable rechargeable aluminum metal batteries with high power performance. The 3D thin film anodes have an approximately four to eight times larger active surface area than a metal foil, which significantly both reduces the electrochemical overpotential, and improves materials utilization. In full cells with organic cathodes, that is, aluminum metal-organic batteries, the 3D thin film anodes provide 165 mAh g(-1)at 0.5 C rate, with a capacity retention of 81% at 20 C, and 86% after 500 cycles. Post-mortem analysis reveals structural degradation to limit the long-term stability at high rates. As the multivalent charge carrier active here is AlCl2+, the realistic maximal specific energy, and power densities at cell level are approximate to 100 Wh kg(-1)and approximate to 3100 W kg(-1), respectively, which is significantly higher than the state-of-the-art for Al batteries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy