SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dong LY) "

Sökning: WFRF:(Dong LY)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ruilope, LM, et al. (författare)
  • Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial
  • 2019
  • Ingår i: American journal of nephrology. - : S. Karger AG. - 1421-9670 .- 0250-8095. ; 50:5, s. 345-356
  • Tidskriftsartikel (refereegranskat)abstract
    • <b><i>Background:</i></b> Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. <b><i>Patients and</i></b> <b><i>Methods:</i></b> The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate ≥25 mL/min/1.73 m<sup>2</sup> and albuminuria (urinary albumin-to-creatinine ratio ≥30 to ≤5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level α = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. <b><i>Conclusions:</i></b> FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Callaway, EM, et al. (författare)
  • A multimodal cell census and atlas of the mammalian primary motor cortex
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 86-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
  •  
7.
  • Mishra, A, et al. (författare)
  • Diminishing benefits of urban living for children and adolescents' growth and development
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615:7954, s. 874-883
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.
  •  
8.
  •  
9.
  • Ji, FL, et al. (författare)
  • The Genetic Architecture of the Clustering of Cardiometabolic Risk Factors: A Study of 8- to 17-Year-Old Chinese Twins
  • 2020
  • Ingår i: Twin research and human genetics : the official journal of the International Society for Twin Studies. - : Cambridge University Press (CUP). - 1832-4274. ; 23:5, s. 283-291
  • Tidskriftsartikel (refereegranskat)abstract
    • We explored the genetic architecture of metabolic risk factors of cardiovascular diseases (CVDs) and their clustering in Chinese boys and girls. Seven metabolic traits (body mass index [BMI], waist circumference [WC], systolic blood pressure [SBP], diastolic blood pressure [DBP], total cholesterol [TC], triglyceride [TG], and uric acid [UA]) were measured in a sample of 1016 twins between 8 and 17 years of age, recruited from the Qingdao Twin Registry. Cholesky, independent pathway, and common pathway models were used to identify the latent genetic structure behind the clustering of these metabolic traits. Genetic architecture of these metabolic traits was largely similar in boys and girls. The highest heritability was found for BMI (a2 = 0.63) in boys and TC (a2 = .69) in girls. Three heritable factors, adiposity (BMI and WC), blood pressure (SBP and DBP), and metabolite factors (TC, TG, and UA), which formed one higher-order latent phenotype, were identified. Latent genetic, common environmental, and unique environmental factors indirectly impacted the three factors through one single latent factor. Our results suggest that there is one latent factor influencing several metabolic traits, which are known risk factors of CVDs in young Chinese twins. Latent genetic, common environmental, and unique environmental factors indirectly imposed on them. These results inform strategies for gene pleiotropic discovery and intervening of CVD risk factors during childhood and adolescence.
  •  
10.
  •  
11.
  • Yan, H, et al. (författare)
  • Superior neovascularization and muscle regeneration in ischemic skeletal muscles following VEGF gene transfer by rAAV1 pseudotyped vectors
  • 2005
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 336:1, s. 287-298
  • Tidskriftsartikel (refereegranskat)abstract
    • Recombinant adeno-associated virus serotype 2 (rAAV2) vector has been widely employed for gene therapy. Recent progress suggests that the new serotypes of AAV showed a better performance than did AAV2 in normal tissues. Here, we evaluate the potential role of human vascular endothelial growth factor (VEGF) gene transfer using rAAV vector pseudotyped with serotype I capsid proteins (rAAV1) in the treatment of muscle ischemia. In ischemic skeletal muscles, the rAAV1-LacZ vector allowed higher level, broader distribution, and long-lasting gene expression compared with the rAAV2-LacZ vector. Muscle VEGF165 production following the rAAV1-VEGF165 vector injection was 5-10 times higher than that following the rAAV2-VEGF165 vector injection. VEGF165 production mediated by the rAAV1-VEGF165 vector stimulated a large set of neovascularization with relatively mature vascular structures and enhanced muscle regeneration in the ischemic skeletal muscles. Thus, the rAAV1-NEGF165 vector mediated gene transfer may be a therapeutic approach to peripheral vascular diseases.
  •  
12.
  • Zhang, D, et al. (författare)
  • Spatial epigenome-transcriptome co-profiling of mammalian tissues
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615616:79537955, s. 113-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1–5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy