SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dong Yihui) "

Sökning: WFRF:(Dong Yihui)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • An, Rong, et al. (författare)
  • Ti–Si–Zr–Zn Nanometallic Glass Substrate with a Tunable Zinc Composition for Surface-Enhanced Raman Scattering of Cytochrome c
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 15:21, s. 25275-25284
  • Tidskriftsartikel (refereegranskat)abstract
    • As a remarkably powerful analytical technique, surface-enhanced Raman scattering (SERS) continues to find applications from molecular biology and chemistry to environmental and food sciences. In search of reliable and affordable SERS substrates, the development has moved from noble metals to other diverse types of structures, e.g., nano-engineered semiconductor materials, but the cost of the enhancement factors (EF) substantially decreasing. In this work, we employ biocompatible thin films of Ti–Si–Zr–Zn nanometallic glasses as the SERS substrates, while tuning the Zn composition. Aided by quartz crystal microbalance, we find that the composition of 4.3% Zn (Ti–Si–Zr–Zn4.3) gives an ultrasensitive detection of Cytochrome c (Cyt c) with an EF of 1.38 × 104, 10-fold higher than the previously reported EF in the semiconducting metal oxide nanomaterials, such as TiO2, and even comparable to the reported noble-metal-assisted semiconducting tungsten oxide hydrate. Ti–Si–Zr–Zn4.3 exhibits a stronger adhesion force toward Cyt c, which ensures the strong binding of Cyt c to the surface, facilitating the Cyt c adsorption onto the surface and thus enhancing the SERS signal. The high separation efficiency of photoinduced electrons and holes in Ti–Si–Zr–Zn4.3 is also acknowledged for promoting the SERS activity. 
  •  
3.
  • Dong, Yihui, et al. (författare)
  • AFM Study of pH-Dependent Adhesion of Single Protein to TiO2 Surface
  • 2019
  • Ingår i: Advanced Materials Interfaces. - : John Wiley & Sons. - 2196-7350. ; 6:14
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of pH-induced electrostatic conditions on the molecular interaction force of a single lysozyme molecule with TiO2 is investigated using atomic force microscopy (AFM). The force between the charged or neutral lysozyme molecule and the TiO2 surface is measured at different pH from 3.6 to 10.8. It is found to be directly proportional to the contact area, given by an effective diameter of the lysozyme molecule, and is further qualitatively verified by the AFM-measured friction coefficients. The results of the Derjaguin–Landau–Verwey–Overbeek theory show that the pH can change the surface charge densities of both lysozyme and TiO2, but the molecular interaction force at different pH is only dependent on the pH-induced effective diameter of lysozyme. The molecular interaction forces, quantified at the nanoscale, can be directly used to design high-performance liquid chromatography measurements at macroscale by tuning the retention time of a protein under varied pH conditions. They can also be applied to develop a model for predicting and controlling the chromatographic separations of proteins.
  •  
4.
  • Dong, Yihui, et al. (författare)
  • Complementary Powerful Techniques for Investigating the Interactions of Proteins with Porous TiO2 and Its Hybrid Materials: A Tutorial Review
  • 2022
  • Ingår i: Membranes. - : MDPI. - 2077-0375. ; 12:4
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the adsorption and interaction between porous materials and protein is of great importance in biomedical and interface sciences. Among the studied porous materials, TiO2 and its hybrid materials, featuring distinct, well-defined pore sizes, structural stability and excellent biocompatibility, are widely used. In this review, the use of four powerful, synergetic and complementary techniques to study protein-TiO2-based porous materials interactions at different scales is summarized, including high-performance liquid chromatography (HPLC), atomic force microscopy (AFM), surface-enhanced Raman scattering (SERS), and Molecular Dynamics (MD) simulations. We expect that this review could be helpful in optimizing the commonly used techniques to characterize the interfacial behavior of protein on porous TiO2 materials in different applications.
  •  
5.
  •  
6.
  • Dong, Yihui, et al. (författare)
  • Determination of the small amount of proteins interacting with TiO2 nanotubes by AFM-measurement
  • 2019
  • Ingår i: Biomaterials. - : Elsevier. - 0142-9612 .- 1878-5905. ; 192, s. 368-376
  • Tidskriftsartikel (refereegranskat)abstract
    • Detecting the small amounts of proteins interacting effectively with the solid film electrodes surface still remains a challenge. To address this, in this work, a new approach was proposed by the combination of the adhesion forces and the molecular interaction measured with AFM. Cytochrome c (Cyt C) interacting effectively with TiO2 nanotube arrays (TNAs) was chosen as a probe. The amounts of Cyt C molecules interacting effectively on TNAs surface (CTNA) range from 5.5×10-12 to 7.0×10-12 mol/cm2 (68.2-86.8 ng/cm2) and they are comparable with the values obtained by the electrochemistry method in the literature, in evidence of the accuracy of this AFM-based approach. The reliability of the proposed approach was further verified by conducting Surface Enhanced Raman Scattering (SERS) measurements and estimating the enhancement factor (EF). This interaction-based AFM approach can be used to accurately obtain the small amounts of adsorbed substances on the solid film electrodes surface in the applications such as biosensors, biocatalysis, and drug delivery, etc.
  •  
7.
  • Dong, Yihui, et al. (författare)
  • Excellent Protein Immobilization and Stability on Heterogeneous C–TiO2 Hybrid Nanostructures : A Single Protein AFM Study
  • 2020
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 36:31, s. 9323-9332
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing molecular interaction is critical for improving the immobilization and stability of proteins on TiO2 surfaces. In this work, mesoporous TiO2 materials with varied pore geometries were decorated with phenyl phosphoric acid (PPA), followed by a thermal treatment to obtain chemically heterogeneous C–TiO2 samples without changing the geometry and crystalline structure, which can keep the advantages of both carbon and TiO2. The molecular interaction force between the protein and the surfaces was measured using atomic force microscopy by decomposing from the total adhesion forces, showing that the surface chemistry determines the interaction strength and depends on the amount of partial carbon coverage on the TiO2 surface (∼40–80%). Samples with 58.3% carbon coverage provide the strongest molecular interaction force, consistent with the observation from the detected friction force. Surface-enhanced Raman scattering and electrochemical biosensor measurements for these C–TiO2 materials were further conducted to illustrate their practical implications, implying their promising applications such as in protein detection and biosensing.
  •  
8.
  • Dong, Yihui, et al. (författare)
  • Excellent Trace Detection of Proteins on TiO2Nanotube Substrates through Novel Topography Optimization
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:50, s. 27790-27800
  • Tidskriftsartikel (refereegranskat)abstract
    • For improving the surface-enhanced Raman scattering (SERS) performance of nanomaterials to achieve trace detection of proteins and complex biological systems, structural and topographical control is one of the important strategies. In this work, a facial and effective method to optimize the topography of TiO2 nanotube arrays (TNAs) is demonstrated, together with a significant enhancement of the SERS performance of cytochrome C (Cyt C) on TNAs. An enhancement factor (EF) up to 104, which is obtained with the newly developed method on the basis of the quantification of atomic force microscopy (AFM)-measured interaction force, is achieved, corresponding to a superior detection limit of Cyt C down to 10-7 M. The main reason is that adjusting the fluoride contents in an electrolyte (from 0.4 to 0.1 wt %) can reduce the content and sizes of cracks, as well as the tube ruptures of TNAs, where the fluoride content at 0.2 wt % can successfully provide the excellent and optimized topography of TNAs. The TNAs with the optimized topography, especially those with larger tube diameters, demonstrated the importance of structural integrity on a remarkably excellent SERS performance in the trace detection of proteins. The proposed method will stimulate the development and optimization of the active substrate on the SERS applications in biology, bioanalysis, and nanoscience. © 2020 American Chemical Society.
  •  
9.
  • Dong, Yihui, et al. (författare)
  • Hydrated Ionic Liquids Boost the Trace Detection Capacity of Proteins on TiO2 Support
  • 2021
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 37:16, s. 5012-5021
  • Tidskriftsartikel (refereegranskat)abstract
    • Trace detection based on surface-enhanced Raman scattering (SERS) has attracted considerable attention, and exploiting efficient strategies to stretch the limit of detection and understanding the mechanisms on molecular level are of utmost importance. In this work, we use ionic liquids (ILs) as trace additives in a protein-TiO2 system, allowing us to obtain an exceptionally low limit of detection down to 10(-9) M. The enhancement factors (EFs) were determined to 2.30 x 10(4), 6.17 x 10(4), and 1.19 x 10(5), for the three systems: one without ILs, one with ILs in solutions, and one with ILs immobilized on the TiO2 substrate, respectively, corresponding to the molecular forces of 1.65, 1.32, and 1.16 nN quantified by the atomic force microscopy. The dissociation and following hydration of ILs, occurring in the SERS system, weakened the molecular forces but instead improved the electron transfer ability of ILs, which is the major contribution for the observed excellent detection. The weaker diffusion of the hydrated IL ions immobilized on the TiO2 substrate did provide a considerably greater EF value, compared to the ILs in the solution. This work clearly demonstrates the importance of the hydration of ions, causing an improved electron transfer ability of ILs and leading to an exceptional SERS performance in the field of trace detection. Our results should stimulate further development to use ILs in SERS and related applications in bioanalysis, medical diagnosis, and environmental science.
  •  
10.
  • Dong, Yihui, et al. (författare)
  • Molecular Mechanistic Insights into the Ionic-Strength-Controlled Interfacial Behavior of Proteins on a TiO2 Surface
  • 2021
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 37:39, s. 11499-11507
  • Tidskriftsartikel (refereegranskat)abstract
    • By adjusting the ionic strengths through changing the concentration of the buffer ions, the molecular force and the interfacial behavior of cytochrome c (Cyt c) and TiO2 are systematically studied. The molecular forces determined by combining the adhesion force and adsorption capacity are found to first increase and then decrease with the increasing ionic strength, with a peak obtained at an ionic strength between 0.8 and 1.0 M. The mechanism is explained based on the dissociation and hydration of ions at the interfaces, where the buffer ions could be completely dissociated at ionic strengths of <0.8 M but were partially associated when the ionic strength increased to a high value (>1.2 M), and the strongest hydration was observed around 1.0 M. The hydrodynamic size and the zeta potential value representing the effective contact area and protein stability of the Cyt c molecule, respectively, are also affected by the hydration and are proportional to the molecular forces. The interfacial behavior of Cyt c molecules on the TiO2 surface, determined through surface-enhanced Raman scattering (SERS), is extremely affected by the ionic strength of the solution as the ion dissociation and hydration also increase the electron transfer ability, where the best SERS enhancement is observed at the ionic strength of around 1.0 M, corresponding to the largest molecular force. Our results provide a detailed understanding at the nanoscale on controlling the protein interfacial behavior with solid surfaces, adjusted by the buffer ions.
  •  
11.
  • Dong, Yihui, et al. (författare)
  • Phosphonium-Based Ionic Liquid Significantly Enhances SERS of Cytochrome c on TiO2 Nanotube Arrays
  • 2022
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:23, s. 27456-27465
  • Tidskriftsartikel (refereegranskat)abstract
    • Surface-enhanced Raman scattering (SERS) is an attractive technique for studying trace detection. It is of utmost importance to further improve the performance and understand the underlying mechanisms. An ionic liquid (IL), the anion of which is derived from biomass, [P6,6,6,14][FuA] was synthesized and used as a trace additive to improve the SERS performance of cytochrome c (Cyt c) on TiO2 nanotube arrays (TNAs). An increased and better enhancement factor (EF) by four to five times as compared to the system without an IL was obtained, which is better than that from using the choline-based amino acid IL previously reported by us. Dissociation of the ILs improved the ionic conductivity of the system, and the long hydrophobic tails of the [P6,6,6,14]+ cation contributed to a strong electrostatic interaction between Cyt c and the TNA surface, thereby enhancing the SERS performance. Atomic force microscopy did verify strong electrostatic interactions between the Cyt c molecules and TNAs after the addition of the IL. This work demonstrates the importance of introducing the phosphonium-based IL to enhance the SERS performance, which will stimulate further development of more effective ILs on SERS detection and other relevant applications in biology.
  •  
12.
  • Dong, Yihui, et al. (författare)
  • Selective Separation of Highly Similar Proteins on Ionic Liquid-Loaded Mesoporous TiO2
  • 2022
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 38:10, s. 3202-3211
  • Tidskriftsartikel (refereegranskat)abstract
    • Separating proteins from their mixtures is an important process in a great variety of applications, but it faces difficult challenges as soon as the proteins are simultaneously of similar sizes and carry comparable net charges. To develop both efficient and sustainable strategies for the selective separation of similar proteins and to understand the underlying molecular mechanisms to enable the separation are crucial. In this work, we propose a novel strategy where the cholinium-based amino acid [Cho][Pro] ionic liquid (IL) is used as the trace additive and loaded physically on a mesoporous TiO2 surface for separating two similar proteins (lysozyme and cytochrome c). The observed selective adsorption behavior is explained by the hydration properties of the [Cho][Pro] loaded on the TiO2 surface and their partially dissociated ions under different pH conditions. As the pH is increased from 5.0 to 9.8, the degree of hydration of IL ions also increases, gradually weakening the interaction strength of the proteins with the substrates, more for lysozymes, leading to their effective separation. These findings were further used to guide the detection of the retention behavior of a binary mixture of proteins in high-performance liquid chromatography, where the introduction of ILs did effectively separate the two similar proteins. Our results should further stimulate the use of ILs in the separation of proteins with a high degree of mutual similarity.
  •  
13.
  •  
14.
  • Huangfu, Changan, et al. (författare)
  • Mechanistic Study of Protein Adsorption on Mesoporous TiO2 in Aqueous Buffer Solutions
  • 2019
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 35:34, s. 11037-11047
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein adsorption is of fundamental importance for bioseparation engineering applications. In this work, a series of mesoporous TiO2 with various geometric structures and different aqueous buffer solutions were prepared as platforms to investigate the effects of the surface geometry and ionic strength on the protein adsorptive behavior. The surface geometry of the TiO2 was found to play a dominant role in the protein adsorption capacity when the ionic strength of buffer solutions is very low. With the increase in ionic strength, the effect of the geometric structure on the protein adsorption capacity reduced greatly. The change of ionic strength has the highest significant effect on the mesoporous TiO2 with large pore size compared with that with small pore size. The interaction between the protein and TiO2 measured with atomic force microscopy further demonstrated that the adhesion force induced by the surface geometry reduced with the increase in the ionic strength. These findings were used to guide the detection of the retention behavior of protein by high-performance liquid chromatography, providing a step forward toward understanding the protein adsorption for predicting and controlling the chromatographic separation of proteins.
  •  
15.
  • Lu, Xiaohua, et al. (författare)
  • Nano-interface enhanced CO2 absorption and mechanism analysis
  • 2020
  • Ingår i: Huagong Xuebao/CIESC Journal. - : Materials China. - 0438-1157. ; 71:1, s. 34-42
  • Tidskriftsartikel (refereegranskat)abstract
    • CO2 capture and separation (CCS) is a key step to mitigate greenhouse gas emissions and develop renewable energy. The trade-off between the rate and efficiency in the CO2 separation process cannot be solved with the traditional process intensification. Using nano-interface to realize process intensification has been widely used in the chemical process with multi-phase transfer, and CO2 separation is one of examples. This review summarizes the research work from the establishment of CO2 transfer model at nano-interface and the resistance regulation, the acquisition of the CO2 chemical potentials at equilibrium and at the nano-interface (the driving force regulation) and the molecular simulation analysis of the interface enhancement mechanism. Based on the theoretical studies, the resistance distribution for the CO2 separation process in a real absorption tower is further analyzed and a "three-stage strengthening scheme" is proposed to decrease the investment and operating costs. © All Right Reserved.
  •  
16.
  • Lu, Xiaohua, et al. (författare)
  • Thermodynamic mechanism of complex fluids-solids interfacial interaction
  • 2019
  • Ingår i: Huagong Xuebao/CIESC Journal. - : Materials China. - 0438-1157. ; 70:10, s. 3677-3689
  • Forskningsöversikt (refereegranskat)abstract
    • Interfacial transfer at mesoscale is a common issue for all the multi-phase chemical processes, and the related study remains as a scientific challenge due to the complexities. Investigating the interfacial interactions at mesoscale to find out the regulation strategies is the key to realize process-intensification of mass-transfer and reaction for the advanced chemical industries. To accurately describe the behavior of fluids at the interface, a new molecular thermodynamic model that can describe the complex fluid-solid interface interaction. When the molecular thermodynamic modeling method is extended to the nano-micro interfacial transfer needs to be developed, calling for the coordination of advanced experiments at nano-micro scale and molecular with molocular thermodynamic modelling. Atomic force microscopy (AFM), which possess the sensitivity down to nanoscale, can directly obtain the interfacial interaction at nano-micro scale. The quantification of AFM-measured forces can be used to construct the coarse-grained molecular model and describe complex interfacial interaction. Then, the coarse-grained molecular model can reveal the molecular thermodynamic mechanism of nano- and micro- interface transfer, realizing quantitative prediction.
  •  
17.
  • Niu, Dong, et al. (författare)
  • Novel brominated flame retardants in house dust from Shanghai, China : levels, temporal variation, and human exposure
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer London. - 2190-4707 .- 2190-4715. ; 31:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Novel brominated flame retardants (NBFRs) have been increasingly used as alternatives to legacy BFRs (e.g., PBDEs and HBCDs) in consumer products, but are liable to emigrate and contaminate indoor dust. In this study, a total of 154 house dust samples including floor dust (FD) and elevated surface dust (ESD) were collected in the biggest metropolitan area (Shanghai) of East China in 2016. Limited information about temporal variation of NBFRs indoors is available, while the period of sampling is influential in human exposure estimates. Levels, temporal variation, and human exposure of seven target NBFRs such as decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EHTBB), and bis(2-ethylhexyl) tetrabromophthalate (BEHTEBP) were investigated in indoor house dust.Results: Concentrations of Sigma(7)NBFRs ranged from 19.11 to 3099ng/g with a geomean of 295.1ng/g in FD, and from 34.74 to 404.6ng/g with a geomean of 117.9ng/g in ESD. The geomeans of DBDPE were 219.6ng/g in FD and 76.89ng/g in ESD, accounting for 90.5% and 80.5% of Sigma(7)NBFRs. Levels of EHTBB, BTBPE, and DBDPE in FD exceeded significantly those in ESD. The temporal variation in Sigma(7)NBFRs in FD was ranked as summer>winter>autumn>spring. The daily exposure doses (DEDs) of Sigma(7)NBFRs via dust ingestion decreased as: infants>toddlers>children>teenagers>adults. Infants showed the highest DED in FD, 9.1ng/kg bw/day.Conclusions: DBDPE clearly dominated the NBFRs in both FD and ESD, but the concentrations of DBDPE in this study were generally moderate compared with the other international studies. Dust ingestion was the major pathway of human exposure to NBFRs indoors. About eightfold difference in exposure estimates between infants and adults showed that infants faced elevated exposure risks in FD. This study highlighted the necessity to estimate human exposure of NBFRs for different age groups using FD and ESD, respectively.
  •  
18.
  • Wei, Yudi, et al. (författare)
  • Detailing molecular interactions of ionic liquids with charged SiO2 surfaces: A systematic AFM study
  • 2022
  • Ingår i: Journal of Molecular Liquids. - : Elsevier. - 0167-7322 .- 1873-3166. ; 350
  • Tidskriftsartikel (refereegranskat)abstract
    • It is crucial to understand the behaviour and interfacial interactions as well as properties of ionic liquids (ILs) at electrode surfaces on the molecular level for developing IL-based electrochemical energy storage devices including supercapacitors and batteries. In this work, a colloid probe atomic force microscopy (CP-AFM) -based experimental approach is presented to determine the molecular interaction forces between ILs and differently charged SiO2 microspheres. The effects of structural variations in ILs and the nature surface charges of SiO2 on the molecular interaction force are systematically studied. The surface charges of SiO2 were achieved by grafting quaternary ammonium and –COOH, –NH2 groups. The determined molecular interaction force is found to be strongly dependent on the surface charge, in which, the force enhances at a more negatively charged surface. Furthermore, the ILs with longer alkyl chains on cations exhibit stronger molecular interaction forces with the charged SiO2. These reported experimental results on the molecular level provide new insights for model development and molecular simulations of ILs interacting with charged surfaces and guide the design of ILs-based supercapacitor and battery systems.
  •  
19.
  • Wei, Yudi, et al. (författare)
  • Molecular interactions of ionic liquids with SiO2 surfaces determined from colloid probe atomic force microscopy
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 24:21, s. 12808-12815
  • Tidskriftsartikel (refereegranskat)abstract
    • Ionic liquids (ILs) interact strongly with many different types of solid surfaces in a wide range of applications, e.g. lubrication, energy storage and conversion, etc. However, due to the nearly immeasurable large number of potential ILs available, identifying the appropriate ILs for specific solid interfaces with desirable properties is a challenge. Theoretical studies are highly useful for effective development of design and applications of these complex molecular systems. However, obtaining reliable force field models and interaction parameters is highly demanding. In this work, we apply a new methodology by deriving the interaction parameters directly from the experimental data, determined by colloid probe atomic force microscopy (CP-AFM). The reliability of the derived interaction parameters is tested by performing molecular dynamics simulations to calculate translational self-diffusion coefficients and comparing them with those obtained from NMR diffusometry.
  •  
20.
  • Wu, Jian, et al. (författare)
  • High load capacity with Ionic liquid-lubricated tribological system
  • 2016
  • Ingår i: Tribology International. - : Elsevier BV. - 0301-679X .- 1879-2464. ; 94, s. 315-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineering polymers with high glass transition temperature have been widely used in dynamic friction systems by oil or solid lubrication. However, in high-load systems, oil lubrication is less efficient due to the viscosity decrease at higher temperatures induced by friction heat. [Bmim][PF6] ionic liquid was used and compared with traditional L-HM46 oil and solid PTFE. Taking advantage of high [Bmim][PF6] viscosity, strong steel-[Bmim][PF6] but poor PEEK-[Bmim][PF6] interaction, the [Bmim][PF6] lubricated PEEK/steel slide falls in hydrodynamic lubrication and elastohydrodynamic lubrication region under 150–1500 N. While the oil and PTFE both failed to lubricate under 800 N.
  •  
21.
  • Wu, Na, et al. (författare)
  • Interaction between proteins and roughness-regulated TiO2 nanotube arrays
  • 2020
  • Ingår i: Huagong Xuebao/CIESC Journal. - : Materials China. - 0438-1157. ; 71:2, s. 831-842
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of TiO2 nanotube arrays (TNAs) with different diameters and roughness were prepared by electrochemical anodization method by changing the fluoride ion concentration [0.4%, 0.3%, 0.2%(mass)] and applied voltage(15, 25, 35, 45 V). The scanning electron microscopy (FESEM) and atomic force microscopy (AFM) results showed that the wall thickness of the prepared TNAs increased and the roughness decreased with the decrease of fluoride ion concentration in the electrolyte. The effects of surface roughness and diameter on the surface mechanical properties of TNAs and the interaction of Cytochrome C (Cyt C) were studied by AFM characterization. The results show that the adhesion is proportional to the contact area. With the increase of the diameter of the TNAs, the wall thickness decreases, the effective contact area between TNAs and Cyt C increases first and then decreases, and the forces of Cyt C with TNAs also increase first and then decrease. The roughness decreases when the diameter was fixed, the effective area of TNAs increases, and the interaction force also increases. It can be seen that the surface roughness and effective contact area of TNAs can be effectively controlled by changing the fluoride ion concentration of the electrolyte, which is further beneficial to promoting interaction with protein molecules.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy