SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Donges Jonathan F. 1983 ) "

Sökning: WFRF:(Donges Jonathan F. 1983 )

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benson, Vitus, et al. (författare)
  • Measuring tropical rainforest resilience under non-Gaussian disturbances
  • 2024
  • Ingår i: Environmental Research Letters. - 1748-9326. ; 19:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Amazon rainforest is considered one of the Earth's tipping elements and may lose stability under ongoing climate change. Recently a decrease in tropical rainforest resilience has been identified globally from remotely sensed vegetation data. However, the underlying theory assumes a Gaussian distribution of forest disturbances, which is different from most observed forest stressors such as fires, deforestation, or windthrow. Those stressors often occur in power-law-like distributions and can be approximated by α-stable Lévy noise. Here, we show that classical critical slowing down (CSD) indicators to measure changes in forest resilience are robust under such power-law disturbances. To assess the robustness of CSD indicators, we simulate pulse-like perturbations in an adapted and conceptual model of a tropical rainforest. We find few missed early warnings and few false alarms are achievable simultaneously if the following steps are carried out carefully: first, the model must be known to resolve the timescales of the perturbation. Second, perturbations need to be filtered according to their absolute temporal autocorrelation. Third, CSD has to be assessed using the non-parametric Kendall-τ slope. These prerequisites allow for an increase in the sensitivity of early warning signals. Hence, our findings imply improved reliability of the interpretation of empirically estimated rainforest resilience through CSD indicators.
  •  
2.
  • Klose, Ann Kristin, et al. (författare)
  • Rate-induced tipping cascades arising from interactions between the Greenland Ice Sheet and the Atlantic Meridional Overturning Circulation
  • 2024
  • Ingår i: Earth System Dynamics. - 2190-4979 .- 2190-4987. ; 15:3, s. 635-652
  • Tidskriftsartikel (refereegranskat)abstract
    • The Greenland Ice Sheet (GIS) and Atlantic Meridional Overturning Circulation (AMOC) are considered tipping elements in the climate system, where global warming exceeding critical threshold levels in forcing can lead to large-scale and nonlinear reductions in ice volume and overturning strength, respectively. The positive–negative feedback loop governing their interaction with a destabilizing effect on the AMOC due to ice loss and subsequent freshwater flux into the North Atlantic as well as a stabilizing effect of a net cooling around Greenland with an AMOC weakening may determine the long-term stability of both tipping elements. Here we explore the potential dynamic regimes arising from this positive–negative tipping feedback loop in a physically motivated conceptual model. Under idealized forcing scenarios we identify conditions under which different kinds of tipping cascades can occur: herein, we distinguish between overshoot/bifurcation tipping cascades, leading to tipping of both GIS and AMOC, and rate-induced tipping cascades, where the AMOC, despite not having crossed its own intrinsic tipping point, tips nonetheless due to the fast rate of ice loss from Greenland. The occurrence of these different cascades is affected by the ice sheet disintegration time and thus eventually by the imposed forcing and its timescales. Our results suggest that it is necessary not only to avoid surpassing the respective critical levels of the environmental drivers for the Greenland Ice Sheet and Atlantic Meridional Overturning Circulation, but also to respect safe rates of environmental change to mitigate potential domino effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy