SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Donnadieu Yannick) "

Sökning: WFRF:(Donnadieu Yannick)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cramwinckel, Margot J., et al. (författare)
  • Global and Zonal-Mean Hydrological Response to Early Eocene Warmth
  • 2023
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 38:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth's hydrological cycle is expected to intensify in response to global warming, with a wet-gets-wetter, dry-gets-drier response anticipated over the ocean. Subtropical regions (similar to 15 degrees-30 degrees N/S) are predicted to become drier, yet proxy evidence from past warm climates suggests these regions may be characterized by wetter conditions. Here we use an integrated data-modeling approach to reconstruct global and zonal-mean rainfall patterns during the early Eocene (similar to 56-48 million years ago). The Deep-Time Model Intercomparison Project (DeepMIP) model ensemble indicates that the mid-(30 degrees-60 degrees N/S) and high-latitudes (>60 degrees N/S) are characterized by a thermodynamically dominated hydrological response to warming and overall wetter conditions. The tropical band (0 degrees-15 degrees N/S) is also characterized by wetter conditions, with several DeepMIP models simulating narrowing of the Inter-Tropical Convergence Zone. However, the latter is not evident from the proxy data. The subtropics are characterized by negative precipitation-evaporation anomalies (i.e., drier conditions) in the DeepMIP models, but there is surprisingly large inter-model variability in mean annual precipitation (MAP). Intriguingly, we find that models with weaker meridional temperature gradients (e.g., CESM, GFDL) are characterized by a reduction in subtropical moisture divergence, leading to an increase in MAP. These model simulations agree more closely with our new proxy-derived precipitation reconstructions and other key climate metrics and imply that the early Eocene was characterized by reduced subtropical moisture divergence. If the meridional temperature gradient was even weaker than suggested by those DeepMIP models, circulation-induced changes may have outcompeted thermodynamic changes, leading to wetter subtropics. This highlights the importance of accurately reconstructing zonal temperature gradients when reconstructing past rainfall patterns. As the world warms, the atmosphere is able to hold more moisture however, this moisture will not fall evenly across the globe. Some regions are expected to become wetter, whereas other regions will become drier. This is the basis of the familiar paradigm wet-gets-wetter, dry-gets-drier and is largely supported by future model projections. However, evidence from the geological record contradicts this hypothesis and suggests that a warmer world could be characterized by wetter (rather than drier) subtropics. Here, we use an integrated data-modeling approach to investigate the hydrological response to warming during an ancient warm interval (the early Eocene, 56-48 million years ago). We show that models with weaker latitudinal temperature gradients are characterized by a reduction in subtropical moisture divergence. However, this was not sufficient to induce subtropical wetting. If the meridional temperature gradient was weaker than suggested by the models, circulation-induced changes may have lead to wetter subtropics. This work shows that the latitudinal temperature gradient is a key factor that influences hydroclimate in the subtropics, especially in past warm climates.
  •  
2.
  • Goudsmit-Harzevoort, Barbara, et al. (författare)
  • The Relationship Between the Global Mean Deep-Sea and Surface Temperature During the Early Eocene
  • 2023
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 38:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimates of global mean near-surface air temperature (global SAT) for the Cenozoic era rely largely on paleo-proxy data of deep-sea temperature (DST), with the assumption that changes in global SAT covary with changes in the global mean deep-sea temperature (global DST) and global mean sea-surface temperature (global SST). We tested the validity of this assumption by analyzing the relationship between global SST, SAT, and DST using 25 different model simulations from the Deep-Time Model Intercomparison Project simulating the early Eocene Climatic Optimum (EECO) with varying CO2 levels. Similar to the modern situation, we find limited spatial variability in DST, indicating that local DST estimates can be regarded as a first order representative of global DST. In line with previously assumed relationships, linear regression analysis indicates that both global DST and SAT respond stronger to changes in atmospheric CO2 than global SST by a similar factor. Consequently, this model-based analysis validates the assumption that changes in global DST can be used to estimate changes in global SAT during the early Cenozoic. Paleo-proxy estimates of global DST, SST, and SAT during EECO show the best fit with model simulations with a 1,680 ppm atmospheric CO2 level. This matches paleo-proxies of EECO atmospheric CO2, indicating a good fit between models and proxy-data.
  •  
3.
  • Lunt, Daniel J., et al. (författare)
  • DeepMIP : model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data
  • 2021
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 17:1, s. 203-227
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from an ensemble of eight climate models, each of which has carried out simulations of the early Eocene climate optimum (EECO, similar to 50 million years ago). These simulations have been carried out in the framework of the Deep-Time Model Intercomparison Project (DeepMIP; http://www.deepmip.org , last access: 10 January 2021); thus, all models have been configured with the same paleogeographic and vegetation boundary conditions. The results indicate that these non-CO2 boundary conditions contribute between 3 and 5 degrees C to Eocene warmth. Compared with results from previous studies, the DeepMIP simulations generally show a reduced spread of the global mean surface temperature response across the ensemble for a given atmospheric CO2 concentration as well as an increased climate sensitivity on average. An energy balance analysis of the model ensemble indicates that global mean warming in the Eocene compared with the preindustrial period mostly arises from decreases in emissivity due to the elevated CO2 concentration (and associated water vapour and long-wave cloud feedbacks), whereas the reduction in the Eocene in terms of the meridional temperature gradient is primarily due to emissivity and albedo changes owing to the non-CO2 boundary conditions (i.e. the removal of the Antarctic ice sheet and changes in vegetation). Three of the models (the Community Earth System Model, CESM; the Geophysical Fluid Dynamics Laboratory, GFDL, model; and the Norwegian Earth System Model, NorESM) show results that are consistent with the proxies in terms of the global mean temperature, meridional SST gradient, and CO2, without prescribing changes to model parameters. In addition, many of the models agree well with the first-order spatial patterns in the SST proxies. However, at a more regional scale, the models lack skill. In particular, the modelled anomalies are substantially lower than those indicated by the proxies in the southwest Pacific; here, modelled continental surface air temperature anomalies are more consistent with surface air temperature proxies, implying a possible inconsistency between marine and terrestrial temperatures in either the proxies or models in this region. Our aim is that the documentation of the large-scale features and model-data comparison presented herein will pave the way to further studies that explore aspects of the model simulations in more detail, for example the ocean circulation, hydrological cycle, and modes of variability, and encourage sensitivity studies to aspects such as paleogeography, orbital configuration, and aerosols.
  •  
4.
  • Lunt, Daniel J., et al. (författare)
  • The DeepMIP contribution to PMIP4 : experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0)
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:2, s. 889-901
  • Tidskriftsartikel (refereegranskat)abstract
    • Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high (>800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene (similar to 50 Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 x CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP - the Deep-time Model Intercomparison Project, itself a group within the wider Paleo-climate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
  •  
5.
  • Niezgodzki, Igor, et al. (författare)
  • Simulation of Arctic sea ice within the DeepMIP Eocene ensemble : Thresholds, seasonality and factors controlling sea ice development
  • 2022
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 214
  • Tidskriftsartikel (refereegranskat)abstract
    • The early Eocene greenhouse climate maintained by high atmospheric CO2 concentrations serves as a testbed for future climate changes dominated by increasing CO2 forcing. In particular, the early Eocene Arctic region is important in the context of future CO2 driven climate warming in the northern polar region and associated shrinking Arctic sea ice. Here, we present early Eocene Arctic sea ice simulations carried out by six coupled climate models within the framework of the Deep-Time Model Intercomparison Project (DeepMIP). We find differences in sea ice responses to CO2 changes across the ensemble and compare the results with available proxy-based sea ice reconstructions from the Arctic Ocean. Most of the models simulate seasonal sea ice presence at high CO2 levels (≥ 840 ppmv = 3× pre-industrial (PI) level of 280 ppmv). However, the threshold when sea ice permanently disappears from the ocean varies considerably between the models (from <840 ppmv to >1680 ppmv). Based on a one-dimensional energy balance model analysis we find that the greenhouse effect likely caused by increased atmospheric water vapor concentration plays an important role in the inter-model spread in Arctic winter surface temperature changes in response to a CO2 rise from 1× to 3× the PI level. Furthermore, differences in simulated surface salinity in the Arctic Ocean play an important role in the control of local sea ice formation. These differences result from different implementations of river run-off between the models, but also from differences in the exchange of waters between a brackish Arctic and a more saline North Atlantic Ocean that are controlled by the width of the gateway between both basins. As there is no geological evidence for Arctic sea ice in the early Eocene, its presence in most of the simulations with 3× PI CO2 level indicates either a higher CO2 level and/or an overly weak polar sensitivity in these models.
  •  
6.
  • Pohl, Alexandre, et al. (författare)
  • Possible patterns of marine primary productivity during the Great Ordovician Biodiversification Event
  • 2018
  • Ingår i: Lethaia. - : Scandinavian University Press / Universitetsforlaget AS. - 0024-1164. ; 51:2, s. 187-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the appearance of numerous animal phyla during the 'Cambrian Explosion', the 'Great Ordovician Biodiversification Event' (GOBE) records their rapid diversification at the lower taxonomic levels, constituting the most significant rise in biodiversity in Earth's history. Recent studies suggest that the rapid rise in phytoplankton diversity observed at the Cambrian-Ordovician boundary may have profoundly restructured marine trophic chains, paving the way for the subsequent flourishing of plankton-feeding groups during the Ordovician. Unfortunately, the fossil record of plankton is incomplete. Its smaller members represent the bulk of the modern marine biomass, but they are usually not documented in Palaeozoic sediments, preventing any definitive assumption with regard to an eventual correlation between biodiversity and biomass at that time. Here, we use an up-to-date ocean general circulation model with biogeochemical capabilities (MITgcm) to simulate the spatial patterns of marine primary productivity throughout the Ordovician, and we compare the model output with available palaeontological and sedimentological data.
  •  
7.
  • Tardif, Delphine, et al. (författare)
  • Orbital variations as a major driver of climate and biome distribution during the greenhouse to icehouse transition
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:43
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies suggest increasing sensitivity to orbital variations across the Eocene-Oligocene greenhouse to icehouse climate transition. However, climate simulations and paleoenvironmental studies mostly provide snapshots of the past climate, therefore overlooking the role of this short-term variability in driving major environmental changes and possibly biasing model-data comparisons. We address this problem by performing numerical simulations describing the end-members of eccentricity, obliquity, and precession. The orbitally induced biome variability obtained in our simulations allows to reconcile previous apparent mismatch between models and paleobotanical compilations. We show that precession-driven intermittent monsoon-like climate may have taken place during the Eocene, resulting in biomes shifting from shrubland to tropical forest in the intertropical convergence zone migration region. Our Oligocene simulations suggest that, along with decreased pCO2, orbital variations crucially modulated major faunal dispersal events around the EOT such as the Grande Coupure by creating and fragmenting the biome corridors along several key land bridges.
  •  
8.
  • Williams, Charles J. R., et al. (författare)
  • African Hydroclimate During the Early Eocene From the DeepMIP Simulations
  • 2022
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 37:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The early Eocene (∼56–48 Myr ago) is characterized by high CO2 estimates (1,200–2,500 ppmv) and elevated global temperatures (∼10°C–16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g., Africa). Here, we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state-of-the-art climate models in the Deep-time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre-industrial simulations and modern observations suggests that model biases are model- and geographically dependent, however, these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre-industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low-level circulation is replaced by increased south-westerly flow at high CO2 levels. Lastly, a model-data comparison using newly compiled quantitative climate estimates from paleobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.
  •  
9.
  • Zhang, Yurui, et al. (författare)
  • Early Eocene Ocean Meridional Overturning Circulation : The Roles of Atmospheric Forcing and Strait Geometry
  • 2022
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 37:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we compare the ocean overturning circulation of the early Eocene (47–56 Ma) in eight coupled climate model simulations from the Deep-Time Model Intercomparison Project (DeepMIP) and investigate the causes of the observed inter-model spread. The most common global meridional overturning circulation (MOC) feature of these simulations is the anticlockwise bottom cell, fed by sinking in the Southern Ocean. In the North Pacific, one model (GFDL) displays strong deepwater formation and one model (CESM) shows weak deepwater formation, while in the Atlantic two models show signs of weak intermediate water formation (MIROC and NorESM). The location of the Southern Ocean deepwater formation sites varies among models and relates to small differences in model geometry of the Southern Ocean gateways. Globally, convection occurs in the basins with smallest local freshwater gain from the atmosphere. The global MOC is insensitive to atmospheric CO2 concentrations from 1× (i.e., 280 ppm) to 3× (840 ppm) pre-industrial levels. Only two models have simulations with higher CO2 (i.e., CESM and GFDL) and these show divergent responses, with a collapsed and active MOC, respectively, possibly due to differences in spin-up conditions. Combining the multiple model results with available proxy data on abyssal ocean circulation highlights that strong Southern Hemisphere-driven overturning is the most likely feature of the early Eocene. In the North Atlantic, unlike the present day, neither model results nor proxy data suggest deepwater formation in the open ocean during the early Eocene, while the evidence for deepwater formation in the North Pacific remains inconclusive.
  •  
10.
  • Zhang, Zijian, et al. (författare)
  • Impact of Mountains in Southern China on the Eocene Climates of East Asia
  • 2022
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 127:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Inconsistencies in the Eocene climates of East Asia have been revealed in both geological studies and simulations. Several earlier reconstructions showed an arid zonal band in mid-latitude China, but others showed a humid climate in the same region. Moreover, previous Eocene modeling studies have demonstrated that climate models can simulate both scenarios in China. Therefore, it is essential to investigate the cause of this model spread. We conducted a series of experiments using Norwegian Earth System Model 1-F and examined the impact of mountains in Southern China on the simulated Eocene climate. These mountains, including the Gangdese and Southeast Mountains, are located along the main path of water vapor transport to East Asia. Our results reveal that the Southeast Mountains play the dominant role in controlling the simulated precipitation in Eastern China during the Eocene. When the heights of the Southeast Mountains exceed similar to 2,000 m, an arid zonal band appears in mid-latitude China, whereas humid climates appear in Eastern China when the elevation of the Southeast Mountains is relatively low.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy