SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Drewnick Frank) "

Sökning: WFRF:(Drewnick Frank)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Drewnick, Frank, et al. (författare)
  • Measurement of ambient, interstitial, and residual aerosol particles on a mountaintop site in central Sweden using an aerosol mass spectrometer and a CVI
  • 2007
  • Ingår i: Journal of Atmospheric Chemistry. - : Springer Science and Business Media LLC. - 0167-7764 .- 1573-0662. ; 56:1, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • The Aerodyne aerosol mass spectrometer (Q-AMS) was coupled with a counterflow virtual impactor (CVI) for the first time to measure cloud droplet residuals of warm tropospheric clouds on Mt. Areskutan in central Sweden in July 2003. Operating the CVI in different operational modes generated mass concentration and species-resolved mass distribution data for non-refractory species of the ambient, interstitial, and residual aerosol. The ambient aerosol measurements revealed that the aerosol at the site was mainly influenced by long-range transport and regional photochemical generation of nitrate and organic aerosol components. Four different major air masses were identified for the time interval of the experiment. While two air masses that approached the site from northeastern Europe via Finland showed very similar aerosol composition, the other two air masses from polar regions and the British Islands had a significantly different composition. During cloud events the larger aerosol particles were found to be activated into cloud droplets. On a mass basis the activation cut-off diameter was approximately 150 nm for nitrate and organics dominated particles and 200 nm for sulfate dominated particles. Generally nitrate and organics were found to be activated into cloud droplets with higher efficiency than sulfate. While a significant fraction of the nitrate in ambient particles was organic nitrates or nitrogen-containing organic species, the nitrate found in the cloud droplet residuals was mainly ammonium nitrate. After passage of clouds the ambient aerosol size distribution had shifted to smaller particle sizes due to the predominantly activation of larger aerosol particles without a significant change in the relative composition of the ambient aerosol.
  •  
2.
  • Dusek, Ulrike, et al. (författare)
  • Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events
  • 2010
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 37
  • Tidskriftsartikel (refereegranskat)abstract
    • In a forested near-urban location in central Germany, the CCN efficiency of particles smaller than 100 nm decreases significantly during periods of new particle formation. This results in an increase of average activation diameters, ranging from 5 to 8% at supersaturations of 0.33% and 0.74%, respectively. At the same time, the organic mass fraction in the sub-100-nm size range increases from approximately 2/3 to 3/4. This provides evidence that secondary organic aerosol (SOA) components are involved in the growth of new particles to larger sizes, and that the reduced CCN efficiency of small particles is caused by the low hygroscopicity of the condensing material. The observed dependence of particle hygroscopicity (k) on chemical composition can be parameterized as a function of organic and inorganic mass fractions (forg, finorg) determined by aerosol mass spectrometry: k = korg forg + kinorg finorg. The obtained value of korg ~ 0.1 is characteristic for SOA, and kinorg ~ 0.7 is consistent with the observed mix of ammonium, sulfate and nitrate ions.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy