SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Du Mingrun) "

Sökning: WFRF:(Du Mingrun)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Du, Mingrun, et al. (författare)
  • High pressure and high temperature induced polymerization of C60 solvates : The effect of intercalated aromatic solvents
  • 2021
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:31, s. 17155-17163
  • Tidskriftsartikel (refereegranskat)abstract
    • The polymerization of three typical aromatic solvent-doped fullerene materials with similar hexagonal closest packed (hcp) structures (mesitylene/C60, m-dichlorobenzene/C60 and m-xylene/C60 solvates) is studied under high pressure and high temperature (HPHT, 1.5 GPa, 573 K and 2 GPa, 700 K, respectively). Raman and photoluminescence spectroscopies reveal that the intercalated aromatic solvents play a crucial role in tailoring the extent of polymerization of C60 molecules. In the solvates, the solvents confine formation of covalent bonds between C60 molecules to the 001 direction and the (001) plane of the hcp lattices, leading to the formation of mixed polymeric phases of monomers, dimers, one-dimensional (1D) chainlike oligomers, and two-dimensional (2D) tetragonal phase polymers under suitable HPHT conditions. The type and number of substituent groups of the aromatic solvents are found to have significant influence, determining the amounts and types of polymeric phases formed. Our studies enrich the understanding of the formation mechanisms for controllably fabricating polymeric fullerenes and facilitate targeted design and synthesis of unique fullerene-based carbon materials.
  •  
2.
  • Du, Mingrun, et al. (författare)
  • High pressure infrared spectroscopy study on C60*CS2 solvates
  • 2017
  • Ingår i: Chemical Physics Letters. - : Elsevier. - 0009-2614 .- 1873-4448. ; 669, s. 49-53
  • Tidskriftsartikel (refereegranskat)abstract
    • High pressure IR study has been carried out on C-60*CS2 solvates up to 34.8 GPa. It is found that the intercalated CS2 molecules significantly affect the transformations of C-60 molecules under pressure. As a probe, the intercalated CS2 molecules can well detect the orientational ordering transition and deformation of C-60 molecules under pressure. The chemical stability of CS2 molecules under pressure is also dramatically enhanced due to the spacial shielding effet from C-60 molecules around in the solvated crystal. These results provide new insight into the effect of interactions between intercalants and fullerenes on the transformations in fullerene solvates under pressure.
  •  
3.
  • Du, Mingrun, et al. (författare)
  • New ordered structure of amorphous carbon clusters induced by fullerene-cubane reactions
  • 2018
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • As a new category of solids, crystalline materials constructed with amorphous building blocks expand the structure categorization of solids, for which designing such new structures and understanding the corresponding formation mechanisms are fundamentally important. Unlike previous reports, new amorphous carbon clusters constructed ordered carbon phases are found here by compressing C8H8/C60 cocrystals, in which the highly energetic cubane (C8H8) exhibits unusual roles as to the structure formation and transformations under pressure. The significant role of C8H8 is to stabilize the boundary interactions of the highly compressed or collapsed C60 clusters which preserves their long‐range ordered arrangement up to 45 GPa. With increasing time at high pressure, the gradual random bonding between C8H8 and carbon clusters, due to “energy release” of highly compressed cubane, leads to the loss of the ability of C8H8 to stabilize the carbon cluster arrangement. Thus a transition from short‐range disorder to long‐range disorder (amorphization) occurs in the formed material. The spontaneous bonding reconstruction most likely results in a 3D network in the material, which can create ring cracks on diamond anvils.
  •  
4.
  • Yang, Xigui, et al. (författare)
  • Polarized Raman study of aligned multiwalled carbon nanotubes arrays under high pressure
  • 2015
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 119:49, s. 27759-27767
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuning the intertube interaction and the topological structure of carbon nanotubes by the application of pressure may obviously affect their properties such as optical and electronic properties. However, characterizing such changes is still challenging. Here, we performed polarized Raman scattering studies on aligned multiwalled carbon nanotube arrays (MWNTAs). Unlike researchers from the previous literature, we found that the MWNTAs exhibit a polarization dependence similar to that of isolated single walled carbon nanotubes at ambient conditions. Upon compression, the polarization dependence weakens gradually with increasing pressure up to ∼20 GPa, which has been discussed in terms of pressure-induced enhancement of intertube interactions. At around 20 GPa, the depolarization effect vanishes, which can be explained by the formation of interlinked sp3 bonding in the MWNTAs. Our results show that polarized Raman spectroscopy is an efficient method to explore not only intertube interaction but also structural transition changes in MWNTs, which overcome the difficulty that MWNTs have no obvious fingerprints like those of single-walled carbon nanotubes in the study of structural transformations.
  •  
5.
  • Yao, Mingguang, et al. (författare)
  • Tailoring Building Blocks and Their Boundary Interactionfor the Creation of New, Potentially Superhard, Carbon Materials
  • 2015
  • Ingår i: Advanced Materials. - : John Wiley & Sons. - 0935-9648 .- 1521-4095. ; 27:26, s. 3962-3968
  • Tidskriftsartikel (refereegranskat)abstract
    • A strategy for preparing hybrid carbon structures with amorphous carbon clusters as hard building blocks by compressing a series of predesigned two-component fullerides is presented. In such constructed structures the building blocks and their boundaries can be tuned by changing the starting components, providing a way for the creation of new hard/superhard materials with desirable properties.
  •  
6.
  • Zhang, Ying, et al. (författare)
  • Capture of novel sp3 hybridized Z-BN by compressing boron nitride nanotubes with small diameter
  • 2022
  • Ingår i: Diamond and related materials. - : Elsevier. - 0925-9635 .- 1879-0062. ; 130
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental synthesis of new sp3 hybridized carbon/boron nitride structures remains challenging despite that numerous sp3 structures have been proposed in theory. Here, we showed that compressed multi-walled boron nitride nanotubes (MWBNNTs) and boron nitride peapods (C60@BNNTs) with small diameters could transform into a new sp3 hybridized boron nitride allotrope (Z-BN). This strategy is considered from the topological transition point of view in boron nitride nanotubes upon compression. Due to the increased curvature in compressed small-diameter MWBNNTs, the uncommon 4- and 8-membered rings in Z-BN could be more favorably formed. And the irreversible tube collapse is proved to be a critical factor for the capture of the formed Z-BN, because of the competition between the resilience of tube before collapse and the stress limitation for the lattice stabilization of Z-BN upon decompression. In this case, Z-BN starts to form above 19.0 GPa, which is fully reversible below 45 GPa and finally becomes quenchable at 93.5 GPa. This collapse-induced capture of the high-pressure phase could also be extended to other tubular materials for quenching novel sp3 structures.
  •  
7.
  • Zhang, Ying, et al. (författare)
  • Negative Volume Compressibility in Sc3N@C-80-Cubane Cocrystal with Charge Transfer
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 142:16, s. 7584-7590
  • Tidskriftsartikel (refereegranskat)abstract
    • According to the laws of thermodynamics, materials normally exhibit contraction or expansion along the directions of the applied pressure or tension. Here, we show that a man-made cocrystal of a metallofullerene and highly energetic cubane, with strained sp(3) bonding, may exhibit an anomalous negative volume compressibility. In this cocrystal, the freely rotating fullerene Sc3N@C-80 acts as a structural building block while static cubane molecules fill the lattice interstitial sites. Under high pressure, Sc3N@C-80 keeps stable and preserves the crystalline framework of the materials, while the cubane undergoes a progressive configurational transformation above 6.5 GPa, probably promoted by charge transfer from fullerene to cubane. A further configurational change of the cubane into a low-density configuration at higher pressure results in an anomalous pressure-driven lattice expansion of the cocrystal (similar to 1.8% volume expansion). Such unusual negative compressibility has previously only been predicted by theory and suggested to appear in mechanical metamaterials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy