SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dubinin E.) "

Sökning: WFRF:(Dubinin E.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Mindur, B, et al. (författare)
  • Gas gain stabilisation in the ATLAS TRT detector
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATLAS (one of two general purpose detectors at the LHC) Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. It is a large straw-based detector and contains about 350,000 electronics channels. The performance of the TRT as tracking and particularly particle identification detector strongly depends on stability of the operation parameters with most important parameter being the gas gain which must be kept constant across the detector volume. The gas gain in the straws can vary significantly with atmospheric pressure, temperature, and gas mixture composition changes. This paper presents a concept of the gas gain stabilisation in the TRT and describes in detail the Gas Gain Stabilisation System (GGSS) integrated into the Detector Control System (DCS). Operation stability of the GGSS during Run-1 is demonstrated.
  •  
3.
  • Brain, D., et al. (författare)
  • A comparison of global models for the solar wind interaction with Mars
  • 2010
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 206:1, s. 139-151
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial results from the first community-wide effort to compare global plasma interaction model results for Mars. Seven modeling groups participated in this activity, using MHD, multi-fluid, and hybrid assumptions in their simulations. Moderate solar wind and solar EUV conditions were chosen, and the conditions were implemented in the models and run to steady state. Model output was compared in three ways to determine how pressure was partitioned and conserved in each model, the location and asymmetry of plasma boundaries and pathways for planetary ion escape, and the total escape flux of planetary oxygen ions. The two participating MHD models provided similar results, while the five sets of multi-fluid and hybrid results were different in many ways. All hybrid results, however, showed two main channels for oxygen ion escape (a pickup ion 'plume' in the hemisphere toward which the solar wind convection electric field is directed, and a channel in the opposite hemisphere of the central magnetotail), while the MHD models showed one (a roughly symmetric channel in the central magnetotail). Most models showed a transition from an upstream region dominated by plasma dynamic pressure to a magnetosheath region dominated by thermal pressure to a low altitude region dominated by magnetic pressure. However, calculated escape rates for a single ion species varied by roughly an order of magnitude for similar input conditions, suggesting that the uncertainties in both the current and integrated escape over martian history as determined by models are large. These uncertainties are in addition to those associated with the evolution of the Sun, the martian dynamo, and the early atmosphere, highlighting the challenges we face in constructing Mars' past using models.
  •  
4.
  • Andrews, David J., et al. (författare)
  • Determination of local plasma densities with the MARSIS radar : Asymmetries in the high-altitude Martian ionosphere
  • 2013
  • Ingår i: Journal of Geophysical Research: Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:10, s. 6228-6242
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a novel method for the automatic retrieval of local plasma density measurements from the Mars advanced radar for subsurface and ionospheric sounding (MARSIS) active ionospheric sounder (AIS) instrument. The resulting large data set is then used to study the configuration of the Martian ionosphere at altitudes above approximate to 300km. An empirical calibration routine is used, which relates the local plasma density to the measured intensity of multiple harmonics of the local plasma frequency oscillation, excited in the plasma surrounding the antenna in response to the transmission of ionospheric sounding pulses. Enhanced accuracy is achieved in higherdensity (n(e)>150cm(-3)) plasmas, when MARSIS AIS is able to directly measure the fundamental frequency of the local plasma oscillation. To demonstrate the usefulness of this data set, the derived plasma densities are binned by altitude and solar zenith angle in regions over weak (|B-c|<20nT) and strong (|B-c|>20nT) crustal magnetic fields, and we find clear and consistent evidence for a significant asymmetry between these two regions. We show that within the approximate to 300-1200km altitude range sampled, the median plasma density is substantially higher on the dayside in regions of relatively stronger crustal fields than under equivalent illuminations in regions of relatively weaker crustal fields. Conversely, on the nightside, median plasma densities are found to be higher in regions of relatively weaker crustal fields. We suggest that the observed asymmetry arises as a result of the modulation of the efficiency of plasma transport processes by the irregular crustal fields and the generally horizontal draped interplanetary magnetic field.
  •  
5.
  • Dubinin, E., et al. (författare)
  • Ion Energization and Escape on Mars and Venus
  • 2011
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 162:1-4, s. 173-211
  • Forskningsöversikt (refereegranskat)abstract
    • Mars and Venus do not have a global magnetic field and as a result solar wind interacts directly with their ionospheres and upper atmospheres. Neutral atoms ionized by solar UV, charge exchange and electron impact, are extracted and scavenged by solar wind providing a significant loss of planetary volatiles. There are different channels and routes through which the ionized planetary matter escapes from the planets. Processes of ion energization driven by direct solar wind forcing and their escape are intimately related. Forces responsible for ion energization in different channels are different and, correspondingly, the effectiveness of escape is also different. Classification of the energization processes and escape channels on Mars and Venus and also their variability with solar wind parameters is the main topic of our review. We will distinguish between classical pickup and 'mass-loaded' pickup processes, energization in boundary layer and plasma sheet, polar winds on unmagnetized planets with magnetized ionospheres and enhanced escape flows from localized auroral regions in the regions filled by strong crustal magnetic fields.
  •  
6.
  • Dubinin, E., et al. (författare)
  • Martian ionosphere observed by Mars Express. 1. Influence of the crustal magnetic fields
  • 2016
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 124, s. 62-75
  • Tidskriftsartikel (refereegranskat)abstract
    • We present multi-instrument observations of the effects of the crustal magnetic field on the Martian ionosphere at different altitudes and solar zenith angles by Mars Express. Total electron content (TEC) at solar zenith angles 55 degrees >= SZA >= 105 degrees over the ionosphere with crustal sources increases with the strength of the magnetic field. A similar trend is observed in a dependence of the local electron density in the upper ionosphere on the crustal magnetic field. On the nightside, at SZA >= 110 degrees, the opposite trend of TEC increase with decrease in the magnetic field value is observed. A dependence on the magnetic field inclination also varies between the day and night sides. TEC decreases for vertical field inclination at 90 degrees >= SZA >= 70 degrees and increases at SZA >= 110 degrees. This effect becomes stronger for larger magnetic field values. A different dependence of the local electron densities in the upper ionosphere at small and high SZA is observed too. An ionospheric exhaust for vertical field inclination in the regions with strong crustal sources is probably caused by escape to space along open field lines which arise due to reconnection that is confirmed by the case studies. The existence of such localized ionospheric depressions is also observed by the in-situ plasma observations. In contrast, on the nightside downward plasma transport and electron precipitation along the field lines produce patches of enhanced ionization.
  •  
7.
  • Dubinin, E., et al. (författare)
  • Martian ionosphere observed by Mars Express. 2. Influence of solar irradiance on upper ionosphere and escape fluxes
  • 2017
  • Ingår i: Planetary and Space Science. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0032-0633 .- 1873-5088. ; 145, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • We present multi-instrument observations of the effects of solar irradiance on the upper Martian ionosphere and escape fluxes based on Mars Express measurements obtained over almost 12 years. It is shown that the variations in the upper ionosphere caused by solar irradiance lead to significant changes in the trans-terminator fluxes of low-energy ions and total ion losses through the tail. The observed dependence of the electron number density in the upper ionosphere at altitudes above 300 km on solar irradiance implies that the ionosphere at such altitudes was denser by a factor of ten during the periods of solar maxima in solar cycles 22-23. Correspondingly, the trans terminator fluxes of cold ions and escape fluxes through the tail were also significantly higher. We estimate an increase of total ion losses through the tail during these solar maxima by a factor of 5-6.
  •  
8.
  • Fränz, M., et al. (författare)
  • Cold ion escape from the Martian ionosphere
  • 2015
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 119, s. 92-102
  • Tidskriftsartikel (refereegranskat)abstract
    • We here report on new measurements of the escape flux of oxygen ions from Mars by combining the observations of the ASPERA-3 and MARSIS experiments on board the European Mars Express spacecraft. We show that in previous estimates of the total heavy ion escape flow the contribution of the cold ionospheric outflow with energies below 10 eV has been underestimated. Both case studies and the derived flow pattern indicate that the cold plasma observed by MARSIS and the superthermal plasma observed by ASPERA-3 move with the same bulk speed in most regions of the Martian tail. We determine maps of the tailside heavy ion flux distribution derived from mean ion velocity distributions sampled over 7 years. If we assume that the superthermal bulk speed derived from these long time averages of the ion distribution function represent the total plasma bulk speed we derive the total tailside plasma flux. Assuming cylindrical symmetry we determine the mean total escape rate for the years 2007-2014 at 2.8 +/- 0.4 x 10(25) atoms/s which is in good agreement with model estimates. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside.
  •  
9.
  • Han, X., et al. (författare)
  • Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:23, s. 8221-8227
  • Tidskriftsartikel (refereegranskat)abstract
    • The Martian ionosphere directly interacts with the solar wind due to lack of a significant intrinsic magnetic field, and an interface is formed in between. The interface is usually recognized by two kinds of indicators: the ionopause identified from ionospheric density profiles and the photoelectron boundary (PEB) determined from the electron energy spectrum at higher energies. However, the difference between them remains unclear. We have determined the locations of crossings of the ionopause and PEB from Mars Express observations during 2005-2013 and found that the average position of the PEB appears to be similar to 200km higher than that of the ionopause, which corresponds to 10(3)cm(-3) in the electron density profile. The discrepancy can be explained by cross-field transport of photoelectrons.
  •  
10.
  • Romanelli, N., et al. (författare)
  • Outflow and plasma acceleration in Titan's induced magnetotail : Evidence of magnetic tension forces
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 119:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Cassini plasma wave and particle observations are combined with magnetometer measurements to study Titan's induced magnetic tail. In this study, we report and analyze the plasma acceleration in Titan's induced magnetotail observed in flybys T17, T19, and T40. Radio and Plasma Wave Science observations show regions of cold plasma with electron densities between 0.1 and a few tens of electrons per cubic centimeter. The Cassini Plasma Spectrometer (CAPS)-ion mass spectrometer (IMS) measurements suggest that ionospheric plasma in this region is composed of ions with masses ranging from 15 to 17 amu and from 28 to 31 amu. From these measurements, we determine the bulk velocity of the plasma and the Alfven velocity in Titan's tail region. Finally, a Walen test of such measurements suggest that the progressive acceleration of the ionospheric plasma shown by CAPS can be interpreted in terms of magnetic tension forces.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy