SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dudin P.) "

Sökning: WFRF:(Dudin P.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chikina, A., et al. (författare)
  • Valence instability in the bulk and at the surface of the antiferromagnet SmRh2Si2
  • 2017
  • Ingår i: Physical Review B - Condensed Matter and Materials Physics. - 1098-0121. ; 95:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Using resonant angle-resolved photoemission spectroscopy and electron band-structure calculations, we explore the electronic structure and properties of Sm atoms at the surface and in the bulk of the antiferromagnet SmRh2Si2. We show that the Sm atoms reveal weak mixed-valent behavior both in the bulk and at the surface. Although trivalent 4f emission strongly dominates, a small divalent 4f signal near the Fermi energy can be clearly resolved for surface and bulk Sm atoms. This behavior is quite different to most other Sm-based materials which typically experience a surface valence transition to a divalent state of Sm atoms at the surface. This phenomenon is explained in analogy to the isostructural Ce compound, where strong 4f hybridization stabilizes mixed-valent ground state both in the bulk and at the surface, and which were described in the light of the single-impurity Anderson model. Implications for other RERh2Si2 (RE = rare-earth elements) compounds are discussed.
  •  
2.
  •  
3.
  • Generalov, A., et al. (författare)
  • Strong spin-orbit coupling in the noncentrosymmetric Kondo lattice
  • 2018
  • Ingår i: Physical Review B. - 2469-9950. ; 98:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong spin-orbit coupling (SOC) in combination with a lack of inversion symmetry and exchange magnetic interaction proves to be a sophisticated instrument allowing efficient control of the spin orientation, energy and trajectories of two-dimensional (2D) electrons and holes trapped at surfaces or interfaces. Exploiting Kondo-related phenomena and crystal-electric-field effects at reduced dimensionalities opens new opportunities to handle their spin-dependent properties offering novel functionalities. We consider here a 2D Kondo lattice represented by a Si-Ir-Si-Yb (SISY) surface block of the heavy-fermion material YbIr2Si2. We show that the Kondo interaction with 4f moments allows finely tuning the group velocities of the strongly spin-polarized carriers in 2D itinerant states of this noncentrosymmetric system. To unveil the peculiarities of this interaction, we used angle-resolved photoemission measurements complemented by first-principles calculations. We established that the strong SOC of the Ir atoms induces spin polarization of the 2D states in SISY block, while the 2D lattice of Yb 4f moments acts as a source for coherent f-d interplay. The strong SOC and lack of inversion symmetry turn out to lead not only to the anticipated Rashba-like splitting of the 2D states, but also to spin splitting of the 4f Kramers doublets. They couple temperature-dependently to the spin-polarized 2D states and thereby guide the properties of the latter.
  •  
4.
  • Matt, C. E., et al. (författare)
  • Direct observation of orbital hybridisation in a cuprate superconductor
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper-oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital (d(x2-y2) and d(z2)) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.
  •  
5.
  • Usachov, D., et al. (författare)
  • Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties
  • 2011
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 11:12, s. 5401-5407
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel strategy for efficient growth of nitrogen-doped graphene (N-graphene) on a large scale from s-triazine molecules is presented. The growth process has been unveiled in situ using time-dependent photoemission. It has been established that a postannealing of N-graphene after gold intercalation causes a conversion of the N environment from pyridinic to graphitic, allowing to obtain more than 8096 of all embedded nitrogen in graphitic form, which is essential for the electron doping in graphene. A band gap, a doping level of 300 meV, and a charge-carrier concentration of similar to 8 x 10(12) electrons per cm 2, induced by 0.4 atom % of graphitic nitrogen, have been detected by angle-resolved photoeinission spectroscopy, which offers great promise for implementation of this system in next generation electronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy