SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dumanski Jan P.) "

Sökning: WFRF:(Dumanski Jan P.)

  • Resultat 1-50 av 83
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruder, Carl E G, et al. (författare)
  • Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles
  • 2008
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 82:3, s. 763-71
  • Tidskriftsartikel (refereegranskat)abstract
    • The exploration of copy-number variation (CNV), notably of somatic cells, is an understudied aspect of genome biology. Any differences in the genetic makeup between twins derived from the same zygote represent an irrefutable example of somatic mosaicism. We studied 19 pairs of monozygotic twins with either concordant or discordant phenotype by using two platforms for genome-wide CNV analyses and showed that CNVs exist within pairs in both groups. These findings have an impact on our views of genotypic and phenotypic diversity in monozygotic twins and suggest that CNV analysis in phenotypically discordant monozygotic twins may provide a powerful tool for identifying disease-predisposition loci. Our results also imply that caution should be exercised when interpreting disease causality of de novo CNVs found in patients based on analysis of a single tissue in routine disease-related DNA diagnostics.
  •  
2.
  • Chase, A., et al. (författare)
  • Profound parental bias associated with chromosome 14 acquired uniparental disomy indicates targeting of an imprinted locus
  • 2015
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 29:10, s. 2069-2074
  • Tidskriftsartikel (refereegranskat)abstract
    • Acquired uniparental disomy (aUPD) is a common finding in myeloid malignancies and typically acts to convert a somatically acquired heterozygous mutation to homozygosity. We sought to identify the target of chromosome 14 aUPD (aUPD14), a recurrent abnormality in myeloid neoplasms and population cohorts of elderly individuals. We identified 29 cases with aUPD14q that defined a minimal affected region (MAR) of 11.2 Mb running from 14q32.12 to the telomere. Exome sequencing (n = 7) did not identify recurrently mutated genes, but methylation-specific PCR at the imprinted MEG3-DLK1 locus located within the MAR demonstrated loss of maternal chromosome 14 and gain of paternal chromosome 14 (P < 0.0001), with the degree of methylation imbalance correlating with the level of aUPD (r = 0.76; P = 0.0001). The absence of driver gene mutations in the exomes of three individuals with aUPD14q but no known haematological disorder suggests that aUPD14q may be sufficient to drive clonal haemopoiesis. Analysis of cases with both aUPD14q and JAK2 V617F (n = 11) indicated that aUPD14q may be an early event in some cases but a late event in others. We conclude that aUPD14q is a recurrent abnormality that targets an imprinted locus and may promote clonal haemopoiesis either as an initiating event or as a secondary change.
  •  
3.
  • Forsberg, Lars A., et al. (författare)
  • Age-related somatic structural changes in the nuclear genome of human blood cells
  • 2012
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 90:2, s. 217-228
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural variations are among the most frequent interindividual genetic differences in the human genome. The frequency and distribution of de novo somatic structural variants in normal cells is, however, poorly explored. Using age-stratified cohorts of 318 monozygotic (MZ) twins and 296 single-born subjects, we describe age-related accumulation of copy-number variation in the nuclear genomes in vivo and frequency changes for both megabase- and kilobase-range variants. Megabase-range aberrations were found in 3.4% (9 of 264) of subjects ≥60 years old; these subjects included 78 MZ twin pairs and 108 single-born individuals. No such findings were observed in 81 MZ pairs or 180 single-born subjects who were ≤55 years old. Recurrent region- and gene-specific mutations, mostly deletions, were observed. Longitudinal analyses of 43 subjects whose data were collected 7-19 years apart suggest considerable variation in the rate of accumulation of clones carrying structural changes. Furthermore, the longitudinal analysis of individuals with structural aberrations suggests that there is a natural self-removal of aberrant cell clones from peripheral blood. In three healthy subjects, we detected somatic aberrations characteristic of patients with myelodysplastic syndrome. The recurrent rearrangements uncovered here are candidates for common age-related defects in human blood cells. We anticipate that extension of these results will allow determination of the genetic age of different somatic-cell lineages and estimation of possible individual differences between genetic and chronological age. Our work might also help to explain the cause of an age-related reduction in the number of cell clones in the blood; such a reduction is one of the hallmarks of immunosenescence.
  •  
4.
  • Forsberg, Lars A., et al. (författare)
  • Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:6, s. 624-628
  • Tidskriftsartikel (refereegranskat)abstract
    • Incidence and mortality for sex-unspecific cancers are higher among men, a fact that is largely unexplained(1,2). Furthermore, age-related loss of chromosome Y (LOY) is frequent in normal hematopoietic cells(3,4), but the phenotypic consequences of LOY have been elusive(5-10). From analysis of 1,153 elderly men, we report that LOY in peripheral blood was associated with risks of all-cause mortality (hazards ratio (HR) = 1.91, 95% confidence interval (CI) = 1.17-3.13; 637 events) and non-hematological cancer mortality (HR = 3.62, 95% CI = 1.56-8.41; 132 events). LOY affected at least 8.2% of the subjects in this cohort, and median survival times among men with LOY were 5.5 years shorter. Association of LOY with risk of all-cause mortality was validated in an independent cohort (HR = 3.66) in which 20.5% of subjects showed LOY. These results illustrate the impact of post-zygotic mosaicism on disease risk, could explain why males are more frequently affected by cancer and suggest that chromosome Y is important in processes beyond sex determination. LOY in blood could become a predictive biomarker of male carcinogenesis.
  •  
5.
  • Kostecka, A, et al. (författare)
  • High prevalence of somatic PIK3CA and TP53 pathogenic variants in the normal mammary gland tissue of sporadic breast cancer patients revealed by duplex sequencing
  • 2022
  • Ingår i: NPJ breast cancer. - : Springer Science and Business Media LLC. - 2374-4677. ; 8:1, s. 76-
  • Tidskriftsartikel (refereegranskat)abstract
    • The mammary gland undergoes hormonally stimulated cycles of proliferation, lactation, and involution. We hypothesized that these factors increase the mutational burden in glandular tissue and may explain high cancer incidence rate in the general population, and recurrent disease. Hence, we investigated the DNA sequence variants in the normal mammary gland, tumor, and peripheral blood from 52 reportedly sporadic breast cancer patients. Targeted resequencing of 542 cancer-associated genes revealed subclonal somatic pathogenic variants of: PIK3CA, TP53, AKT1, MAP3K1, CDH1, RB1, NCOR1, MED12, CBFB, TBX3, and TSHR in the normal mammary gland at considerable allelic frequencies (9 × 10−2– 5.2 × 10−1), indicating clonal expansion. Further evaluation of the frequently damaged PIK3CA and TP53 genes by ultra-sensitive duplex sequencing demonstrated a diversified picture of multiple low-level subclonal (in 10−2–10−4 alleles) hotspot pathogenic variants. Our results raise a question about the oncogenic potential in non-tumorous mammary gland tissue of breast-conserving surgery patients.
  •  
6.
  • Razzaghian, Hamid Reza, et al. (författare)
  • Post-Zygotic and Inter-Individual Structural Genetic Variation in a Presumptive Enhancer Element of the Locus between the IL10Rβ and IFNAR1 Genes
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:9, s. e67752-
  • Tidskriftsartikel (refereegranskat)abstract
    • Although historically considered as junk-DNA, tandemly repeated sequence motifs can affect human phenotype. For example, variable number tandem repeats (VNTR) with embedded enhancers have been shown to regulate gene transcription. The post-zygotic variation is the presence of genetically distinct populations of cells in an individual derived from a single zygote, and this is an understudied aspect of genome biology. We report somatically variable VNTR with sequence properties of an enhancer, located upstream of IFNAR1. Initially, SNP genotyping of 63 monozygotic twin pairs and multiple tissues from 21 breast cancer patients suggested a frequent post-zygotic mosaicism. The VNTR displayed a repeated 32 bp core motif in the center of the repeat, which was flanked by similar variable motifs. A total of 14 alleles were characterized based on combinations of segments, which showed post-zygotic and inter-individual variation, with up to 6 alleles in a single subject. Somatic variation occurred in similar to 24% of cases. In this hypervariable region, we found a clustering of transcription factor binding sites with strongest sequence similarity to mouse Foxg1 transcription factor binding motif. This study describes a VNTR with sequence properties of an enhancer that displays post-zygotic and inter-individual genetic variation. This element is within a locus containing four related cytokine receptors: IFNAR2, IL10R beta, IFNAR1 and IFNGR2, and we hypothesize that it might function in transcriptional regulation of several genes in this cluster. Our findings add another level of complexity to the variation among VNTR-based enhancers. Further work may unveil the normal function of this VNTR in transcriptional control and its possible involvement in diseases connected with these receptors, such as autoimmune conditions and cancer.
  •  
7.
  • Thompson, Deborah J, et al. (författare)
  • Genetic predisposition to mosaic Y chromosome loss in blood
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 575, s. 652-657
  • Tidskriftsartikel (refereegranskat)abstract
    • Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.
  •  
8.
  • Andersson, Robin, et al. (författare)
  • A Segmental Maximum A Posteriori Approach to Genome-wide Copy Number Profiling
  • 2008
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 24:6, s. 751-758
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • MOTIVATION: Copy number profiling methods aim at assigning DNA copy numbers to chromosomal regions using measurements from microarray-based comparative genomic hybridizations. Among the proposed methods to this end, Hidden Markov Model (HMM)-based approaches seem promising since DNA copy number transitions are naturally captured in the model. Current discrete-index HMM-based approaches do not, however, take into account heterogeneous information regarding the genomic overlap between clones. Moreover, the majority of existing methods are restricted to chromosome-wise analysis. RESULTS: We introduce a novel Segmental Maximum A Posteriori approach, SMAP, for DNA copy number profiling. Our method is based on discrete-index Hidden Markov Modeling and incorporates genomic distance and overlap between clones. We exploit a priori information through user-controllable parameterization that enables the identification of copy number deviations of various lengths and amplitudes. The model parameters may be inferred at a genome-wide scale to avoid overfitting of model parameters often resulting from chromosome-wise model inference. We report superior performances of SMAP on synthetic data when compared with two recent methods. When applied on our new experimental data, SMAP readily recognizes already known genetic aberrations including both large-scale regions with aberrant DNA copy number and changes affecting only single features on the array. We highlight the differences between the prediction of SMAP and the compared methods and show that SMAP accurately determines copy number changes and benefits from overlap consideration.
  •  
9.
  •  
10.
  • Buckley, Patrick G., et al. (författare)
  • Identification of genetic aberrations on chromosome 22 outside the NF2 locus in schwannomatosis and neurofibromatosis type 2
  • 2005
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 26:6, s. 540-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Schwannomatosis is characterized by multiple peripheral and cranial nerve schwannomas that occur in the absence of bilateral 8th cranial nerve schwannomas. The latter is the main diagnostic criterion of neurofibromatosis type 2 (NF2), which is a related but distinct disorder. The genetic factors underlying the differences between schwannomatosis and NF2 are poorly understood, although available evidence implicates chromosome 22 as the primary location of the gene(s) of interest. To investigate this, we comprehensively profiled the DNA copy number in samples from sporadic and familial schwannomatosis, NF2, and a large cohort of normal controls. Using a tiling-path chromosome 22 genomic array, we identified two candidate regions of copy number variation, which were further characterized by a PCR-based array with higher resolution. The latter approach allows the detection of minute alterations in total genomic DNA, with as little as 1.5 kb per measurement point of nonredundant sequence on the array. In DNA derived from peripheral blood from a schwannomatosis patient and a sporadic schwannoma sample, we detected rearrangements of the immunoglobulin lambda (IGL) locus, which is unlikely to be due to a B-cell specific somatic recombination of IGL. Analysis of normal controls indicated that these IGL rearrangements were restricted to schwannomatosis/schwannoma samples. In the second candidate region spanning GSTT1 and CABIN1 genes, we observed a frequent copy number polymorphism at the GSTT1 locus. We further describe missense mutations in the CABIN1 gene that are specific to samples from schwannomatosis and NF2 and make this gene a plausible candidate for contributing to the pathogenesis of these disorders.
  •  
11.
  • Chase, Andrew, et al. (författare)
  • PRR14L mutations are associated with chromosome 22 acquired uniparental disomy, age-related clonal hematopoiesis and myeloid neoplasia
  • 2019
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 33:5, s. 1184-1194
  • Tidskriftsartikel (refereegranskat)abstract
    • Acquired uniparental disomy (aUPD, also known as copy-neutral loss of heterozygosity) is a common feature of cancer cells and characterized by extended tracts of somatically-acquired homozygosity without any concurrent loss or gain of genetic material. The presumed genetic targets of many regions of aUPD remain unknown. Here we describe the association of chromosome 22 aUPD with mutations that delete the C-terminus of PRR14L in patients with chronic myelomonocytic leukemia (CMML), related myeloid neoplasms and age-related clonal hematopoiesis (ARCH). Myeloid panel analysis identified a median of three additional mutated genes (range 1-6) in cases with a myeloid neoplasm (n = 8), but no additional mutations in cases with ARCH (n = 2) suggesting that mutated PRR14L alone may be sufficient to drive clonality. PRR14L has very limited homology to other proteins and its function is unknown. ShRNA knockdown of PRR14L in human CD34+ cells followed by in vitro growth and differentiation assays showed an increase in monocytes and decrease in neutrophils, consistent with a CMML-like phenotype. RNA-Seq and cellular localization studies suggest a role for PRR14L in cell division. PRR14L is thus a novel, biallelically mutated gene and potential founding abnormality in myeloid neoplasms.
  •  
12.
  • de Ståhl, Teresita Díaz, et al. (författare)
  • Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32 K BAC-clone-based array
  • 2008
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 29:3, s. 398-408
  • Tidskriftsartikel (refereegranskat)abstract
    • To further explore the extent of structural large-scale variation in the human genome, we assessed copy number variations (CNVs) in a series of 71 healthy subjects from three ethnic groups. CNVs were analyzed using comparative genomic hybridization (CGH) to a BAC array covering the human genome, using DNA extracted from peripheral blood, thus avoiding any culture-induced rearrangements. By applying a newly developed computational algorithm based on Hidden Markov modeling, we identified 1,078 autosomal CNVs, including at least two neighboring/overlapping BACs, which represent 315 distinct regions. The average size of the sequence polymorphisms was approximately 350 kb and involved in total approximately 117 Mb or approximately 3.5% of the genome. Gains were about four times more common than deletions, and segmental duplications (SDs) were overrepresented, especially in larger deletion variants. This strengthens the notion that SDs often define hotspots of chromosomal rearrangements. Over 60% of the identified autosomal rearrangements match previously reported CNVs, recognized with various platforms. However, results from chromosome X do not agree well with the previously annotated CNVs. Furthermore, data from single BACs deviating in copy number suggest that our above estimate of total variation is conservative. This report contributes to the establishment of the common baseline for CNV, which is an important resource in human genetics.
  •  
13.
  •  
14.
  • Dumanski, Jan P., et al. (författare)
  • Smoking is associated with mosaic loss of chromosome Y
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6217, s. 81-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Tobacco smoking is a risk factor for numerous disorders, including cancers affecting organs outside the respiratory tract. Epidemiological data suggest that smoking is a greater risk factor for these cancers in males compared to females. This observation, together with the fact that males have a higher incidence of and mortality from most non-sex-specific cancers, remains unexplained. Loss of chromosome Y (LOY) in blood cells is associated with increased risk of nonhematological tumors. We demonstrate here that smoking is associated with LOY in blood cells in three independent cohorts [TwinGene: odds ratio (OR) = 4.3, 95% CI = 2.8-6.7; ULSAM: OR = 2.4, 95% CI = 1.6-3.6; and PIVUS: OR = 3.5, 95% CI = 1.4-8.4] encompassing a total of 6014 men. The data also suggest that smoking has a transient and dose-dependent mutagenic effect on LOY status. The finding that smoking induces LOY thus links a preventable risk factor with the most common acquired human mutation.
  •  
15.
  • Erickson, Robert P, et al. (författare)
  • A patient with 22q11.2 deletion and Opitz syndrome-like phenotype has the same deletion as velocardiofacial patients
  • 2007
  • Ingår i: American Journal of Medical Genetics Part A. - : Wiley. - 1552-4825 .- 1552-4833. ; 143A:24, s. 3302-3308
  • Tidskriftsartikel (refereegranskat)abstract
    • Five patients were previously described with the Opitz (GBBB) syndrome (OMIM 145410) phenotype and 22q11.2 deletion determined by FISH but the precise limits of their deletions have not been determined. Since one locus for Opitz syndrome maps to 22q11.2 and chromosomal arrangements are frequently complex and could inactivate such a locus, we performed high-resolution array-based comparative genomic hybridization (CGH) on a new Opitz syndrome-like phenotype patient with a 22q11.2 deletion. He shares the same deletion as patients with velocardiofacial and DiGeorge syndrome.
  •  
16.
  •  
17.
  • Lawrie, Andrew S., et al. (författare)
  • Procoagulant activity in patients with sickle cell trait
  • 2012
  • Ingår i: Blood Coagulation and Fibrinolysis. - 0957-5235 .- 1473-5733. ; 23:4, s. 268-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with sickle cell trait (STr) are usually considered to be asymptomatic. However, complications, including hypercoagulability, increased risk of venous thromboembolism and the exertional exercise syndrome with rhabdomyolysis and sudden death, have been described. The exact cause of these adverse events is unclear. We have investigated two patients, a set of monozygotic twins with STr, to establish their procoagulant activity status as a potential indicator of thrombotic risk. In-vivo thrombin generation was assessed by the measurement of prothrombin fragment 1+2 (F1+2) and thrombin-antithrombin complexes (TAT). D-dimer was used as a marker of fibrinolytic activity. The potential to generate thrombin was determined using an ex-vivo thrombin generation test (TGT). The impact of red blood cell (RBC)-derived microparticle shedding and RBC rheology were examined. TAT (>60 mu g/l) and F1+2 (948 pmol/l) were markedly elevated in patient 2 but within the normal reference range in patient 1 (TAT=2.5 mu g/l; F1+2=138 pmol/l). D-dimer levels (0.9 mg/l FEU) were similarly elevated in both patients. TGT peak thrombin and endogenous thrombin potential (ETP) were elevated to similar degrees in both patients. Flow cytometric analysis for RBC-derived microparticles showed that both patients had elevated levels on two occasions. RBC deformability, blood viscosity and RBC aggregation were normal and similar in both patients. The results demonstrated different coagulation activity in the patients with one patient in a prothrombotic state, suggesting that there may be two levels of hypercoagulability in STr. Measurement of such differences would allow for separation of high and low-risk patients from serious complications.
  •  
18.
  • Mikhail, Fady M., et al. (författare)
  • A previously unrecognized microdeletion syndrome on chromosome 22 band q11.2 encompassing the BCR gene
  • 2007
  • Ingår i: American journal of medical genetics. Part A. - : Wiley. - 1552-4825 .- 1552-4833. ; 143A:18, s. 2178-2184
  • Tidskriftsartikel (refereegranskat)abstract
    • Susceptibility of the chromosome 22q11.2 region to rearrangements has been recognized on the basis of common clinical disorders such as the DiGeorge/velocardiofacial syndrome (DG/VCFs). Recent evidence has implicated low-copy repeats (LCRs); also known as segmental duplications; on 22q as mediators of nonallelic homologous recombination (NAHR) that result in rearrangements of 22q11.2. It has been shown that both deletion and duplication events can occur as a result of NAHR caused by unequal crossover of LCRs. Here we report on the clinical, cytogenetic and array CGH studies of a 15-year-old Hispanic boy with history of learning and behavior problems. We suggest that he represents a previously unrecognized microdeletion syndrome on chromosome 22 band q11.2 just telomeric to the DG/VCFs typically deleted region and encompassing the BCR gene. Using a 32K BAC array CGH chip we were able to refine and precisely narrow the breakpoints of this microdeletion, which was estimated to be 1.55-1.92 Mb in size and to span approximately 20 genes. This microdeletion region is flanked by LCR clusters containing several modules with a very high degree of sequence homology (>95%), and therefore could play a causal role in its origin.
  •  
19.
  • Mikhail, Fady M., et al. (författare)
  • Overlapping phenotype of wolf-hirschhorn and beckwith-wiedemann syndromes in a girl with der(4)t(4; 1 1)(pter;pter)
  • 2007
  • Ingår i: American Journal of Medical Genetics, Part A. - : Wiley. - 1552-4825 .- 1552-4833. ; 143:15, s. 1760-1766
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on an 8-month-old girl with a novel unbalanced chromosomal rearrangement, consisting of a terminal deletion of 4p and a paternal duplication of terminal 11p. Each of these is associated with the well-known clinical phenotypes of Wolf-Hirschhorn syndrome (WHS) and Beckwith-Wiedemann syndrome (BWS), respectively. She presented for clinical evaluation of dysmorphic facial features, developmental delay, atrial septal defect (ASD), and left hydro-nephrosis. High-resolution cytogenetic analysis revealed a normal female karyotype, but subtelomeric fluorescence in situ hybridization (FISH) analysis revealed a der(4)t(4;11) (pter;pter). Both FISH and microarray CGH studies clearly demonstrated that the WHS critical regions 1 and 2 were deleted, and that the BWS imprinted domains (ID) 1 and 2 were duplicated on the der(4). Parental chromosome analysis revealed that the father carried a cryptic balanced t(4;11)(pter;pter). As expected, our patient manifests findings of both WHS (a growth retardation syndrome) and BWS (an overgrowth syndrome). We compare her unique phenotypic features with those that have been reported for both syndromes.
  •  
20.
  • Nord, Helena, et al. (författare)
  • Characterization of novel and complex genomic aberrations in glioblastoma using a 32K BAC array
  • 2009
  • Ingår i: Neuro-Oncology. - : Oxford University Press (OUP). - 1522-8517 .- 1523-5866. ; 11:6, s. 803-818
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastomas (GBs) are malignant CNS tumors often associated with devastating symptoms. Patients with GB have a very poor prognosis, and despite treatment, most of them die within 12 months from diagnosis. Several pathways, such as the RAS, tumor protein 53 (TP53), and phosphoinositide kinase 3 (PIK3) pathways, as well as the cell cycle control pathway, have been identified to be disrupted in this tumor. However, emerging data suggest that these aberrations represent only a fraction of the genetic changes involved in gliomagenesis. In this study, we have applied a 32K clone-based genomic array, covering 99% of the current assembly of the human genome, to the detailed genetic profiling of a set of 78 GBs. Complex patterns of aberrations, including high and narrow copy number amplicons, as well as a number of homozygously deleted loci, were identified. Amplicons that varied both in number (three on average) and in size (1.4 Mb on average) were frequently detected (81% of the samples). The loci encompassed not only previously reported oncogenes (EGFR, PDGFRA, MDM2, and CDK4) but also numerous novel oncogenes as GRB10, MKLN1, PPARGC1A, HGF, NAV3, CNTN1, SYT1, and ADAMTSL3. BNC2, PTPLAD2, and PTPRE, on the other hand, represent novel candidate tumor suppressor genes encompassed within homozygously deleted loci. Many of these genes are already linked to several forms of cancer; others represent new candidate genes that may serve as prognostic markers or even as therapeutic targets in the future. The large individual variation observed between the samples demonstrates the underlying complexity of the disease and strengthens the demand for an individualized therapy based on the genetic profile of the patient.
  •  
21.
  • Nord, Helena, et al. (författare)
  • Focal amplifications are associated with high grade and recurrences in stage Ta bladder carcinoma
  • 2010
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 126:6, s. 1390-1402
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary bladder cancer is a heterogeneous disease with tumors ranging from papillary noninvasive (stage Ta) to solid muscle infiltrating tumors (stage T2+). The risk of progression and death for the most frequent diagnosed type, Ta, is low, but the high incidence of recurrences has a significant effect on the patients' quality of life and poses substantial costs for health care systems. Consequently, the purpose of this study was to search for predictive factors of recurrence on the basis of genetic profiling. A clinically well characterized cohort of Ta bladder carcinomas, selected by the presence or absence of recurrences, was evaluated by an integrated analysis of DNA copy number changes and gene expression (clone-based 32K, respectively, U133Plus2.0 arrays). Only a few chromosomal aberrations have previously been defined in superficial bladder cancer. Surprisingly, the profiling of Ta tumors with a high-resolution array showed that DNA copy alterations are relatively common in this tumor type. Furthermore, we observed an overrepresentation of focal amplifications within high-grade and recurrent cases. Known (FGFR3, CCND1, MYC, MDM2) and novel candidate genes were identified within the loci. For example, MYBL2, a nuclear transcription factor involved in cell-cycle progression; YWHAB, an antiapoptotic protein; and SDC4, an important component of focal adhesions represent interesting candidates detected within two amplicons on chromosome 20, for which DNA amplification correlated with transcript up-regulation. The observed overrepresentation of amplicons within high-grade and recurrent cases may be clinically useful for the identification of patients who will benefit from a more aggressive therapy.
  •  
22.
  • Piotrowski, Arkadiusz, et al. (författare)
  • Somatic mosaicism for copy number variation in differentiated human tissues
  • 2008
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 29:9, s. 1118-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Two major types of genetic variation are known: single nucleotide polymorphisms (SNPs), and a more recently discovered structural variation, involving changes in copy number (CNVs) of kilobase- to megabase-sized chromosomal segments. It is unknown whether CNVs arise in somatic cells, but it is, however, generally assumed that normal cells are genetically identical. We tested 34 tissue samples from three subjects and, having analyzed for each tissue < or =10(-6) of all cells expected in an adult human, we observed at least six CNVs, affecting a single organ or one or more tissues of the same subject. The CNVs ranged from 82 to 176 kb, often encompassing known genes, potentially affecting gene function. Our results indicate that humans are commonly affected by somatic mosaicism for stochastic CNVs, which occur in a substantial fraction of cells. The majority of described CNVs were previously shown to be polymorphic between unrelated subjects, suggesting that some CNVs previously reported as germline might represent somatic events, since in most studies of this kind, only one tissue is typically examined and analysis of parents for the studied subjects is not routinely performed. A considerable number of human phenotypes are a consequence of a somatic process. Thus, our conclusions will be important for the delineation of genetic factors behind these phenotypes. Consequently, biobanks should consider sampling multiple tissues to better address mosaicism in the studies of somatic disorders.
  •  
23.
  • Razzaghian, Hamid Reza, et al. (författare)
  • Somatic Mosaicism for Chromosome X and Y Aneuploidies in Monozygotic Twins Heterozygous for Sickle Cell Disease Mutation
  • 2010
  • Ingår i: American Journal of Medical Genetics. Part A. - : Wiley. - 1552-4825 .- 1552-4833. ; 152A:10, s. 2595-2598
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatic genetic variation in health and disease is poorly explored. Monozygotic (MZ) twins are a suitable model for studies of somatic mosaicism since genetic differences in twins derived from the same zygote represent an irrefutable example of somatic variation. We report the analysis of a pair of generally healthy female MZ twins, discordant for somatic mosaicism for aneuploidy of chromosomes X and Y. Both twins are heterozygous carriers of sickle cell disease mutation. Genotyping of blood DNA from both twins using Illumina Human 610 SNP array revealed a copy number imbalance for chromosome X in a proportion of cells in one twin. Fluorescent in situ hybridization (FISH) analysis confirmed monosomy X (45,X) in 7% of proband nucleated blood cells. Unexpectedly, FISH analysis of cells from the other twin revealed 45,X and 46,XY lineages, both present in 1% of cells. The mechanism behind formation of these aneuploidies suggests several aberrant chromosome segregation events in meiosis and mitoses following conception. Our report contributes to the delineation of the frequency of somatic structural genomic variation in normal MZ twins. These results also illustrate the plasticity of the human genome for tolerating large copy number changes in healthy subjects and show the sensitivity of the Illumina platform for detection of aberrations that are present in a minority of the studied cells.
  •  
24.
  • Sandgren, Johanna, et al. (författare)
  • Integrative epigenomic and genomic analysis of malignant pheochromocytoma
  • 2010
  • Ingår i: Experimental and Molecular Medicine. - : Springer Science and Business Media LLC. - 1226-3613 .- 2092-6413. ; 42:7, s. 484-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenomic and genomic changes affect gene expression and contribute to tumor development. The histone modifications trimethylated histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) are epigenetic regulators associated to active and silenced genes, respectively and alterations of these modifications have been observed in cancer. Furthermore, genomic aberrations such as DNA copy number changes are common events in tumors. Pheochromocytoma is a rare endocrine tumor of the adrenal gland that mostly occurs sporadic with unknown epigenetic/genetic cause. The majority of cases are benign. Here we aimed to combine the genome-wide profiling of H3K4me3 and H3K27me3, obtained by the ChIP-chip methodology, and DNA copy number data with global gene expression examination in a malignant pheochromocytoma sample. The integrated analysis of the tumor expression levels, in relation to normal adrenal medulla, indicated that either histone modifications or chromosomal alterations, or both, have great impact on the expression of a substantial fraction of the genes in the investigated sample. Candidate tumor suppressor genes identified with decreased expression, a H3K27me3 mark and/or in regions of deletion were for instance TGIF1, DSC3, TNFRSF10B, RASSF2, HOXA9, PTPRE and CDH11. More genes were found with increased expression, a H3K4me3 mark, and/or in regions of gain. Potential oncogenes detected among those were GNAS, INSM1, DOK5, ETV1, RET, NTRK1, IGF2, and the H3K27 trimethylase gene EZH2. Our approach to associate histone methylations and DNA copy number changes to gene expression revealed apparent impact on global gene transcription, and enabled the identification of candidate tumor genes for further exploration.
  •  
25.
  • Sandgren, Johanna, et al. (författare)
  • Recurrent genomic alterations in benign and malignant pheochromocytomas and paragangliomas revealed by whole-genome array comparative genomic hybridization analysis
  • 2010
  • Ingår i: Endocrine-Related Cancer. - 1351-0088 .- 1479-6821. ; 17:3, s. 561-579
  • Tidskriftsartikel (refereegranskat)abstract
    • Pheochromocytomas and abdominal paragangliomas are adrenal and extra-adrenal catecholamine-producing tumours. They arise due to heritable cancer syndromes, or more frequently occur sporadically due to an unknown genetic cause. The majority of cases are benign, but malignant tumours are observed. Previous comparative genomic hybridization (CGH) and loss of heterozygosity studies have shown frequent deletions of chromosome arms 1p, 3q and 22q in pheochromocytomas. We applied high-resolution whole-genome array CGH on 53 benign and malignant pheochromocytomas and paragangliomas to narrow down candidate regions as well as to identify chromosomal alterations more specific to malignant tumours. Minimal overlapping regions (MORs) were identified on 16 chromosomes, with the most frequent MORs of deletion (> or = 32%) occurring on chromosome arms 1p, 3q, 11p/q, 17p and 22q, while the chromosome arms 1q, 7p, 12q and 19p harboured the most common MORs of gain (> or = 14%). The most frequent MORs (61-75%) in the pheochromocytomas were identified at 1p, and the four regions of common losses encompassed 1p36, 1p32-31, 1p22-21 and 1p13. Tumours that did not show 1p loss generally demonstrated aberrations on chromosome 11. Gain of chromosomal material was significantly more frequent among the malignant cases. Moreover, gain at 19q, trisomy 12 and loss at 11q were positively associated with malignant pheochromocytomas, while 1q gain was commonly observed in the malignant paragangliomas. Our study revealed novel and narrow recurrent chromosomal regions of loss and gain at several autosomes, a prerequisite for identifying candidate tumour suppressor genes and oncogenes involved in the development of adrenal and extra-adrenal catecholamine-producing tumours.
  •  
26.
  • Sjöblom, Tobias, et al. (författare)
  • Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis.
  • 2001
  • Ingår i: Cancer Res. - 0008-5472. ; 61:15, s. 5778-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Dermatofibrosarcoma protuberans (DFSP) and giant cell fibroblastoma (GCF) are recurrent, infiltrative skin tumors that presently are treated with surgery. DFSP and GCF tumors are genetically characterized by chromosomal rearrangements fusing the collagen type Ialpha1 (COLIA1) gene to the platelet-derived growth factor B-chain (PDGFB) gene. It has been shown that the resulting COL1A1/PDGF-B fusion protein is processed to mature PDGF-BB. Autocrine PDGF receptor stimulation has therefore been predicted to contribute to DFSP and GCF tumor development and growth. Here we demonstrate presence of activated PDGF receptors in primary cultures derived from six different DFSP and GCF tumors. Three of the primary cultures were further characterized; their in vitro growth displayed an increased sensitivity to treatment with the PDGF receptor tyrosine kinase inhibitor STI571, as compared with normal fibroblasts. Transplantable tumors, displaying a DFSP-like histology, were established from one of the DFSP primary cultures. Treatment of tumor-bearing severe combined immunodeficient mice with STI571 reduced tumor growth. The growth-inhibitory effects in vitro and in vivo occurred predominantly through induction of tumor cell apoptosis. Our study demonstrates growth-inhibitory effects of PDGF receptor antagonists on human DFSP- and GCF-derived tumor cells and demonstrates that autocrine PDGF receptor stimulation provides antiapoptotic signals contributing to the growth of these cells. These findings suggest targeting of PDGF receptors as a novel treatment strategy for DFSP and GCF.
  •  
27.
  • Thuresson, Ann-Charlotte, et al. (författare)
  • Whole-genome array-CGH for detection of submicroscopic chromosomal imbalances in children with mental retardation
  • 2007
  • Ingår i: Cytogenetic and Genome Research. - : S. Karger AG. - 1424-8581 .- 1424-859X. ; 118:1, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomal imbalances are the major cause of mental retardation (MR). Many of these imbalances are caused by submicroscopic deletions or duplications not detected by conventional cytogenetic methods. Microarray-based comparative genomic hybridization (array-CGH) is considered to be superior for the investigation of chromosomal aberrations in children with MR, and has been demonstrated to improve the diagnostic detection rate of these small chromosomal abnormalities. In this study we used 1 Mb genome-wide array-CGH to screen 48 children with MR and congenital malformations for submicroscopic chromosomal imbalances, where the underlying cause was unknown. All children were clinically investigated and subtelomere FISH analysis had been performed in all cases. Suspected microdeletion syndromes such as deletion 22q11.2, Williams-Beuren and Angelman syndromes were excluded before array-CGH analysis was performed. We identified de novo interstitial chromosomal imbalances in two patients (4%), and an interstitial deletion inherited from an affected mother in one patient (2%). In another two of the children (4%), suspected imbalances were detected but were also found in one of the non-affected parents. The yield of identified de novo alterations detected in this study is somewhat less than previously described, and might reflect the importance of which selection criterion of patients to be used before array-CGH analysis is performed. However, array-CGH proved to be a high-quality and reliable tool for genome-wide screening of MR patients of unknown etiology.
  •  
28.
  •  
29.
  •  
30.
  • Ardesjö, Brita, et al. (författare)
  • Autoantibodies to glutathione S-transferase theta 1 in patients with primary sclerosing cholangitis and other autoimmune diseases.
  • 2008
  • Ingår i: Journal of autoimmunity. - : Elsevier BV. - 0896-8411 .- 1095-9157. ; 30:4, s. 273-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary sclerosing cholangitis (PSC) is an enigmatic disorder with a suggested autoimmune basis. A variety of autoantigens have been suggested but no specific or highly directed epitope has been identified. To address this issue, we constructed a cDNA library from normal human choledochus and screened expressing clones with serum from a patient with PSC and inflammatory bowel disease (IBD). Based on this screening, glutathione S-transferase theta 1 (GSTT1) was identified as a potential autoantigenic target. To study the specificity of GSTT1, we determined immunoreactivity using a panel of 58 patients with PSC, with and without IBD, 57 patients with IBD, 31 patients with Hashimoto's thyroiditis, 30 patients with primary biliary cirrhosis (PBC), 20 patients with insulin dependent diabetes mellitus, 22 patients with autoimmune polyendocrine syndrome type I, 10 patients with systemic lupus erythematosus (SLE), 20 patients with Sjögren's syndrome, 12 patients with autoimmune pancreatitis, 28 patients with Addison's disease, 27 patients with Grave's disease, 17 with myasthenia gravis, and 118 healthy controls. Reactivity against GSTT1 was found with PSC and IBD as well as some patients with other autoimmune pathology, indicating that this population of antibodies is neither specific nor a sensitive serologic marker for PSC, but the frequency was clearly higher in autoimmune patients than controls. GSTT1-antibodies have been described in persons with GSTT1-null genotype and are suggested to develop as an alloimmune response to blood transfusions from GSTT1-positive donors or pregnancies with GSTT1-positive children. Therefore, two IBD patients with and 15 PSC patients without GSTT1-antibodies were genotyped for GSTT1 to investigate if the presence of GSTT1-antibodies was associated with the GSTT1-null genotype and possibly caused by an alloimmune response. Both IBD patients and three of the PSC patients were of the GSTT1-null genotype. We note that the frequency of GSTT1-antibodies in this study is more than 100-fold higher than the frequency described earlier in patients with autoimmune diseases. We also observe an increased frequency of GSTT1-antibodies in patients with autoimmune diseases compared to healthy controls. This increased frequency can be explained by an autoimmune phenotype which increases susceptibility to such autoantibodies, or by a high frequency of the GSTT1-null genotype in autoimmune disease.
  •  
31.
  • Benetkiewicz, Magdalena, et al. (författare)
  • Chromosome 22 array-CGH profiling of breast cancer delimited minimal common regions of genomic imbalances and revealed frequent intra-tumoral genetic heterogeneity
  • 2006
  • Ingår i: International Journal of Oncology. - 1019-6439 .- 1791-2423. ; 29:4, s. 935-945
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is a common malignancy and the second most frequent cause of death among women. Our aim was to perform DNA copy number profiling of 22q in breast tumors using a methodology which is superior, as compared to the ones applied previously. We studied 83 biopsies from 63 tumors obtained from 60 female patients. A general conclusion is that multiple distinct patterns of genetic aberrations were observed, which included deletion(s) and/or gain(s), ranging in size from affecting the whole chromosome to only a few hundred kb. Overall, the analysis revealed genomic imbalances of 22q in 22% (14 out of 63) of tumors. The predominant profile (11%) was monosomy 22. The smallest identified candidate region, in the vicinity of telomere of 22q, encompasses approximately 220 kb and was involved in all but one of the tumors with aberrations on chromosome 22. This segment is dense in genes and contains 11 confirmed and one predicted gene. The availability of multiple biopsies from a single tumor provides an excellent opportunity for analysis of possible intra-tumor differences in genetic profiles. In 15 tumors we had access to two or three biopsies derived from the same lesion and these were studied independently. Four out of 15 (26.6%) tumors displayed indications of clonal intra-tumor genotypic differences, which should be viewed as a high number, considering that we studied in detail only a single human chromosome. Our results open up several avenues for continued genetic research of breast cancer.
  •  
32.
  • Benetkiewicz, Magdalena, et al. (författare)
  • High-resolution gene copy number and expression profiling of human chromosome 22 in ovarian carcinomas
  • 2005
  • Ingår i: Genes, Chromosomes and Cancer. - : John Wiley & Sons. - 1045-2257 .- 1098-2264. ; 42:3, s. 228-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous low-resolution studies of chromosome 22 in ovarian carcinoma have suggested its involvement in the development of the disease. We report a high-resolution analysis of DNA copy number and gene expression of 22q in 18 ovarian carcinomas using a 22q-specific genomic microarray. We identified aberrations in 67% of the studied tumors, which displayed 3 distinct gene copy number profiles. The majority of the cases (11 of 18) demonstrated heterozygous terminal deletions of various sizes, the smallest of which was 3.5 Mb. The second profile, detected in 3 tumors, revealed the coexistence of heterozygous deletions and different patterns of low-copy-number gain that involved the proximal half of 22q. The latter finding has not been reported previously in ovarian carcinoma. One case displayed a continuous deletion encompassing the entire 22q, consistent with monosomy 22. Furthermore, we compared the results with the available data on these tumors by using cDNA microarrays to define the degree of correlation between abnormalities at the DNA level and variation in mRNA expression. By a comparison with the expression data, we were able to identify 21 deleted genes showing low mRNA levels and 12 amplified genes displaying elevated gene expression, several of which play roles in cell cycle control and the induction of apoptosis. Our results indicated significant correlation between DNA copy number aberrations and variation in mRNA expression. We also identified several regions and candidate genes on 22q that should be studied further to determine their role in the development of ovarian cancer.
  •  
33.
  • Benetkiewicz, Magdalena, et al. (författare)
  • Identification of limited regions of genetic aberrations in patients affected with Wilms' tumor using a tiling-path chromosome 22 array
  • 2006
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 119:3, s. 571-578
  • Tidskriftsartikel (refereegranskat)abstract
    • Wilms' tumor (WT) is one of the most common solid tumors of childhood. The genetics of this disorder is complex and few studies have suggested allelic loss of chromosome 22 as a frequent aberration. To assess tumor- and possible germline-specific regions affected with gene copy number variations on this chromosome, we applied a high-resolution genomic clone-based chromosome 22 array to a series of 28 WT samples and the paired blood-derived DNA of the patients. The group of tumors was enriched for cases with metastases, relapse or fatal outcome, criteria that were expected to yield a higher number of alterations on chromosome 22. Overall, the array-based form of comparative genomic hybridization (array-CGH) analysis revealed genomic changes in 53% (15 out of 28) of cases. We identified hemizygous deletion of the whole arm of 22q in 3 tumors (11%). Furthermore, a complex amplifier genotype was detected in 8 samples, presenting regions of gain along the chromosome, which defined 7 distinct minimal overlapping segments. The distribution of aberrations in 4 additional cases displaying regional genomic imbalances delimited 2 tumor suppressor/oncogene candidate loci, 1 in the proximal and the other in the terminal part of 22q. Analysis of these regions revealed the presence of several candidate genes that may play a role in the development of WT. These findings demonstrate the power of array-CGH in the determination of DNA copy number alterations and further strength the notion that WT-associated genes exist on this chromosome.
  •  
34.
  • Bruhn-Olszewska, Bozena, et al. (författare)
  • Loss of Y in leukocytes as a risk factor for critical COVID-19 in men.
  • 2022
  • Ingår i: Genome medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 pandemic, which has a prominent social and economic impact worldwide, shows a largely unexplained male bias for the severity and mortality of the disease. Loss of chromosome Y (LOY) is a risk factor candidate in COVID-19 due to its prior association with many chronic age-related diseases, and its impact on immune gene transcription.Publicly available scRNA-seq data of PBMC samples derived from male patients critically ill with COVID-19 were reanalyzed, and LOY status was added to the annotated cells. We further studied LOY in whole blood for 211 COVID-19 patients treated at intensive care units (ICU) from the first and second waves of the pandemic. Of these, 139 patients were subject to cell sorting for LOY analysis in granulocytes, low-density neutrophils (LDNs), monocytes, and PBMCs.Reanalysis of available scRNA-seq data revealed LDNs and monocytes as the cell types most affected by LOY. Subsequently, DNA analysis indicated that 46%, 32%, and 29% of critically ill patients showed LOY above 5% cut-off in LDNs, granulocytes, and monocytes, respectively. Hence, the myeloid lineage that is crucial for the development of severe COVID-19 phenotype is affected by LOY. Moreover, LOY correlated with increasing WHO score (median difference 1.59%, 95% HDI 0.46% to 2.71%, p=0.025), death during ICU treatment (median difference 1.46%, 95% HDI 0.47% to 2.43%, p=0.0036), and history of vessel disease (median difference 2.16%, 95% HDI 0.74% to 3.7%, p=0.004), among other variables. In 16 recovered patients, sampled during ICU stay and 93-143 days later, LOY decreased significantly in whole blood and PBMCs. Furthermore, the number of LDNs at the recovery stage decreased dramatically (median difference 76.4 per 10,000 cell sorting events, 95% HDI 55.5 to 104, p=6e-11).We present a link between LOY and an acute, life-threatening infectious disease. Furthermore, this study highlights LOY as the most prominent clonal mutation affecting the myeloid cell lineage during emergency myelopoiesis. The correlation between LOY level and COVID-19 severity might suggest that this mutation affects the functions of monocytes and neutrophils, which could have consequences for male innate immunity.
  •  
35.
  • Buckley, Patrick G, et al. (författare)
  • A full-coverage, high-resolution human chromosome 22 genomic microarrayfor clinical and research applications
  • 2002
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 11:25, s. 3221-3229
  • Tidskriftsartikel (refereegranskat)abstract
    • We have constructed the first comprehensive microarray representing a human chromosome for analysis of DNA copy number variation. This chromosome 22 array covers 34.7 Mb, representing 1.1% of the genome, with an average resolution of 75 kb. To demonstrate the utility of the array, we have applied it to profile acral melanoma, dermatofibrosarcoma, DiGeorge syndrome and neurofibromatosis 2. We accurately diagnosed homozygous/heterozygous deletions, amplifications/gains, IGLV/IGLC locus instability, and breakpoints of an imbalanced translocation. We further identified the 14-3-3 eta isoform as a candidate tumor suppressor in glioblastoma. Two significant methodological advances in array construction were also developed and validated. These include a strictly sequence defined, repeat-free, and non-redundant strategy for array preparation. This approach allows an increase in array resolution and analysis of any locus; disregarding common repeats, genomic clone availability and sequence redundancy. In addition, we report that the application of phi29 DNA polymerase is advantageous in microarray preparation. A broad spectrum of issues in medical research and diagnostics can be approached using the array. This well annotated and gene-rich autosome contains numerous uncharacterized disease genes. It is therefore crucial to associate these genes to specific 22q-related conditions and this array will be instrumental towards this goal. Furthermore, comprehensive epigenetic profiling of 22q-located genes and high-resolution analysis of replication timing across the entire chromosome can be studied using our array.
  •  
36.
  •  
37.
  • Buckley, Patrick G., et al. (författare)
  • Genome-wide microarray-based comparative genomic hybridization analysis of lymphoplasmacytic lymphomas reveals heterogeneous aberrations
  • 2009
  • Ingår i: Leukemia and Lymphoma. - : Informa UK Limited. - 1042-8194 .- 1029-2403. ; 50:9, s. 1528-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphoplasmacytic lymphoma (LPL) is not a sharply delineated lymphoma entity, either morphologically, phenotypically, or clinically. The diagnosis is often made by excluding other small cell lymphomas with plasmacytic differentiation, thus a genetic diagnostic marker would be of great benefit. Conventional cytogenetic techniques have previously demonstrated a deletion of 6q in a proportion of cases, varying from 7 to 55%. In this report, we apply array-based comparative genomic hybridization on 11 LPL samples. Genomic aberrations were detected in 9 of 11 cases, and included gains and losses. In general, the number of genetic aberrations was relatively low (two to three abnormalities per case). Recurrent aberrations detected were deletion of 6q (two cases), deletion of chromosome 17 (two cases), gain of 3q (two cases), and gain of chromosome 7 (two cases). This report not only confirms the reported loss of 6q in a proportion of cases but also highlights the genetic heterogeneity of LPL, in accordance with the known immunophenotypical, morphological, and clinical diversity of the disease.
  •  
38.
  • Cunningham, Janet L., et al. (författare)
  • Common pathogenetic mechanism involving human chromosome 18 in familial and sporadic ileal carcinoid tumors
  • 2011
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 50:2, s. 82-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Serotonin producing endocrine carcinoma of small intestine (ileal carcinoid) is a clinically distinct endocrine tumor. It is generally considered as a sporadic disease and its molecular etiology is poorly understood. We report comprehensive clinical and molecular studies of 55 sporadic and familial patients diagnosed with this condition. Nine pedigrees encompassing 23 affected subjects were established, consistent with autosomal dominant mode of inheritance. Familial and sporadic patients demonstrated indistinguishable clinical pictures. Molecular analyses of 61 tumors from 45 individuals, including eight familial and 37 sporadic patients, aimed at determination of global copy number aberrations using BAC and Illumina SNP arrays and gene expression profiling by Affymetrix chips. Chromosome 18 aberrations were identified in both sporadic and in familial tumors; 100% vs. 38%, respectively. Other, less frequent aberrations were also common for both groups. Global expression profiles revealed no differentially expressed genes. Frequent gain of chromosome 7 was exclusively observed in metastases, when patient matched primary tumors and metastases were compared. Notably, the latter aberration correlated with solid growth pattern morphology (P < 0.01), a histopathological feature that has previously been related to worse prognosis. The clinical and molecular similarities identified between sporadic and familial cases suggest a common pathogenetic mechanism involved in tumor initiation. The familial variant of ileal carcinoid represents a previously unrecognized autosomal dominant inherited tumor disease, which we propose to call Familial Ileal Endocrine Carcinoma (FIEC). Our findings indicate the location of a FIEC tumor suppressor gene near the telomere of 18q, involved in development of inherited and sporadic tumors.
  •  
39.
  • Danielsson, Marcus, et al. (författare)
  • Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals
  • 2020
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 28:3, s. 349-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Mosaic loss of chromosome Y (LOY) is the most common somatic genetic aberration and is associated with increased risk for all-cause mortality, various forms of cancer and Alzheimer's disease, as well as other common human diseases. By tracking LOY frequencies in subjects from which blood samples have been serially collected up to five times during up to 22 years, we observed a pronounced intra-individual variation of changes in the frequency of LOY within individual men over time. We observed that in some individuals the frequency of LOY in blood clearly progressed over time and that in other men, the frequency was constant or showed other types of longitudinal development. The predominant method used for estimating LOY is calculation of the median Log R Ratio of probes located in the male specific part of chromosome Y (mLRRY) from intensity data generated by SNP-arrays, which is difficult to interpret due to its logarithmic and inversed scale. We present here a formula to transform mLRRY-values to percentage of LOY that is a more comprehensible unit. The formula was derived using measurements of LOY from matched samples analysed using SNP-array, whole genome sequencing and a new AMELX/AMELY-based assay for droplet digital PCR. The methods described could be applied for analyses of the vast amount of SNP-array data already generated in the scientific community, allowing further discoveries of LOY associated diseases and outcomes.
  •  
40.
  • De Bustos, Cecilia, et al. (författare)
  • Analysis of copy number variation in normal human population within a region containing complex segmental duplications on 22q11 using high resolution array-CGH
  • 2006
  • Ingår i: Genomics. - : Elsevier BV. - 0888-7543 .- 1089-8646. ; 88:2, s. 152-162
  • Tidskriftsartikel (refereegranskat)abstract
    • A previously detected copy number polymorphism (Ep CNP) in patients affected with neuroectodermal tumors led us to investigate its frequency and length in the normal population. For this purpose, a program called Sequence Allocator was developed and applied for the construction of an array that consisted of unique and duplicated fragments, allowing the assessment of copy number variation within regions of segmental duplications. The average resolution of this array was 11 kb and we determined the size of the Ep CNP to be 290 kb. Analysis of normal controls identified 7.7 and 7.1% gains in peripheral blood and lymphoblastoid cell line (LCL) DNA, respectively, while deletions were found only in the LCL group (7.1%). This array platform allows the detection of DNA copy number variation within regions of pronounced genomic complexity, which constitutes an improvement over available technologies.
  •  
41.
  • De Bustos, Cecilia, 1977- (författare)
  • Genetic and Epigenetic Variation in the Human Genome : Analysis of Phenotypically Normal Individuals and Patients Affected with Brain Tumors
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Genetic and epigenetic variation is a key determinant of human diversity and has an impact on disease predisposition. Single nucleotide polymorphisms (SNPs) and copy number polymorphisms (CNPs) are the main forms of genetic variation. The challenge is to distinguish normal variations from disease-associated changes. Combination of genetic and epigenetic alterations, often together with an environmental component, can cause cancer. In paper I, we investigated possible alterations affecting the transcriptional regulation of PDGFRα in patients affected with central nervous system tumors by characterizing the haplotype combinations in the PDGFRA gene promoter. A specific over-representation of one haplotype (H2δ) in primitive neuroectodermal tumors and ependymomas was observed, suggesting a functional role for the ZNF148/PDGFRα pathway in the tumor pathogenesis. In paper II, 50 glioblastomas were analyzed for DNA copy number variation with a chromosome 22 tiling genomic array. While 20% of tumors displayed monosomy 22, copy number variations affecting a portion of chromosome 22 were found in 14% of cases. This implies the presence of genes involved in glioblastoma development on 22q. Paper III described the analysis of copy number variation of 37 ependymomas using the same array. We detected monosomy in 51.5% of the samples. In addition, we identified two overlapping germline deletions of 2.2 Mb and 320 kb (the latter designated as Ep CNP). In order to investigate whether Ep CNP was a common polymorphism in the normal population or had an association with ependymoma development, we constructed a high-resolution PCR product-based microarray covering this locus (paper IV). For this purpose, we developed a program called Sequence Allocator, which automates the process of array design. This approach allowed assessment of copy number variation within regions of segmental duplications. Our results revealed that gains or deletions were identical in size and encompassed 290 kb. Therefore, papers I-IV suggest that some SNPs and CNPs can be regarded as tumor-associated polymorphisms. Finally, paper V describes variation of DNA methylation among fully differentiated tissues by using an array covering ~9% of the human genome. Major changes in the overall methylation were also found in colorectal cancer cell lines lacking one or two DNA methyltransferases.
  •  
42.
  •  
43.
  • De Bustos, Cecilia, et al. (författare)
  • Tissue-specific variation in DNA methylation levels along human chromosome 1
  • 2009
  • Ingår i: Epigenetics & Chromatin. - : Springer Science and Business Media LLC. - 1756-8935. ; 2, s. 7-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Most methods to scan the genome in different tissues for differentially methylated sites have focused on the methylation of CpGs in CpG islands, which are concentrations of CpGs often associated with gene promoters. RESULTS: Here, we use a methylation profiling strategy that is predominantly responsive to methylation differences outside of CpG islands. The method compares the yield from two samples of size-selected fragments generated by a methylation-sensitive restriction enzyme. We then profile nine different normal tissues from two human donors relative to spleen using a custom array of genomic clones covering the euchromatic portion of human chromosome 1 and representing 8% of the human genome. We observe gross regional differences in methylation states across chromosome 1 between tissues from the same individual, with the most striking differences detected in the comparison of cerebellum and spleen. Profiles of the same tissue from different donors are strikingly similar, as are the profiles of different lobes of the brain. Comparing our results with published gene expression levels, we find that clones exhibiting extreme ratios reflecting low relative methylation are statistically enriched for genes with high expression ratios, and vice versa, in most pairs of tissues examined. CONCLUSION: The varied patterns of methylation differences detected between tissues by our methylation profiling method reinforce the potential functional significance of regional differences in methylation levels outside of CpG islands.
  •  
44.
  • Descartes, Maria, et al. (författare)
  • Distal 22q11.2 microduplication encompassing the BCR gene
  • 2008
  • Ingår i: American journal of medical genetics. Part A. - : Wiley. - 1552-4825 .- 1552-4833. ; 146A:23, s. 3075-3081
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosome 22 band q11.2 has been recognized to be highly susceptible to subtle microdeletions and microduplications, which have been attributed to the presence of several large segmental duplications; also known as low copy repeats (LCRs). These LCRs function as mediators of non-allelic homologous recombination (NAHR), which results in these chromosomal rearrangements as a result of unequal crossover. The four centromeric LCRs at proximal 22q11.2 have been previously implicated in recurrent chromosomal rearrangements including the DiGeorge/Velocardiofacial syndrome (DG/VCFs) microdeletion and its reciprocal microduplication. Recently, we and others have demonstrated that the four telomeric LCRs at distal 22q11.2 are causally implicated in a newly recognized recurrent distal 22q11.2 microdeletion syndrome in the region immediately telomeric to the DG/VCFs typically deleted region. Here we report on the clinical, cytogenetic, and array CGH studies of a 4.5-year-old girl with history of failure to thrive, developmental delay (DD), and relative macrocephaly. She carries a paternally inherited approximately 2.1 Mb microduplication at distal 22q11.2, which spans approximately 34 annotated genes, and is flanked by two of the four telomeric 22q11.2 LCRs. We conclude that the four telomeric LCRs at distal 22q11.2 can mediate both deletions and duplications in this genomic region. Both deletions and duplication of this region present with subtle clinical features including mild to moderate mental retardation, DD, and mild dysmorphic features.
  •  
45.
  •  
46.
  •  
47.
  • Dorvall, Malin, 1991, et al. (författare)
  • Mosaic Loss of Chromosome Y Is Associated With Functional Outcome After Ischemic Stroke.
  • 2023
  • Ingår i: Stroke. - : Wolters Kluwer. - 1524-4628 .- 0039-2499. ; 54:9, s. 2434-2437
  • Tidskriftsartikel (refereegranskat)abstract
    • Mosaic loss of chromosome Y (LOY) is associated with cardiovascular and neurodegenerative diseases in men, and genetic predisposition to LOY is associated with poor poststroke outcome. We, therefore, tested the hypothesis that LOY itself is associated with functional outcome after ischemic stroke.The study comprised male patients with ischemic stroke from the cohort studies SAHLSIS2 (Sahlgrenska Academy Study on Ischemic Stroke Phase 2; n=588) and LSR (Lund Stroke Register; n=735). We used binary logistic regression to analyze associations between LOY, determined by DNA microarray intensity data, and poor 3-month functional outcome (modified Rankin Scale score, >2) in each cohort separately and combined. Patients who received recanalization therapy were excluded from sensitivity analyses.LOY was associated with about 2.5-fold increased risk of poor outcome in univariable analyses (P<0.001). This association withstood separate adjustment for stroke severity and diabetes in both cohorts but not age. In sensitivity analyses restricted to the nonrecanalization group (n=987 in the combined cohort), the association was significant also after separate adjustment for age (odds ratio, 1.6 [95% CI, 1.1-2.4]) and when additionally adjusting for stroke severity and diabetes (odds ratio, 1.6 [95% CI, 1.1-2.5]).We observed an association between LOY and poor outcome after ischemic stroke in patients not receiving recanalization therapy. Future studies on LOY and other somatic genetic alterations in larger stroke cohorts are warranted.
  •  
48.
  • Dumanski, Jan P., et al. (författare)
  • A MUTYH germline mutation is associated with small intestinal neuroendocrine tumors
  • 2017
  • Ingår i: Endocrine-Related Cancer. - 1351-0088 .- 1479-6821. ; 24:8, s. 427-443
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetics behind predisposition to small intestinal neuroendocrine tumors (SI-NETs) is largely unknown, but there is growing awareness of a familial form of the disease. We aimed to identify germline mutations involved in the carcinogenesis of SI-NETs. The strategy included next-generation sequencing of exome- and/or whole-genome of blood DNA, and in selected cases, tumor DNA, from 24 patients from 15 families with the history of SI-NETs. We identified seven candidate mutations in six genes that were further studied using 215 sporadic SI-NET patients. The result was compared with the frequency of the candidate mutations in three control cohorts with a total of 35,688 subjects. A heterozygous variant causing an amino acid substitution p.(Gly396Asp) in the MutY DNA glycosylase gene (MUTYH) was significantly enriched in SI-NET patients (minor allele frequencies 0.013 and 0.003 for patients and controls respectively) and resulted in odds ratio of 5.09 (95% confidence interval 1.56-14.74; P value = 0.0038). We also found a statistically significant difference in age at diagnosis between familial and sporadic SI-NETs. MUTYH is involved in the protection of DNA from mutations caused by oxidative stress. The inactivation of this gene leads to specific increase of G:C- > T:A transversions in DNA sequence and has been shown to cause various cancers in humans and experimental animals. Our results suggest that p.(Gly396Asp) in MUTYH, and potentially other mutations in additional members of the same DNA excision-repair pathway (such as the OGG1 gene) might be involved in driving the tumorigenesis leading to familial and sporadic SI-NETs.
  •  
49.
  • Dumanski, Jan P., et al. (författare)
  • Immune cells lacking Y chromosome show dysregulation of autosomal gene expression
  • 2021
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 78:8, s. 4019-4033
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer’s disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a “genetic wasteland”, and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 83
Typ av publikation
tidskriftsartikel (76)
doktorsavhandling (4)
annan publikation (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (71)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Dumanski, Jan P (81)
Piotrowski, Arkadius ... (30)
Davies, Hanna (21)
Menzel, Uwe (15)
Buckley, Patrick G (12)
Mantripragada, Kiran ... (12)
visa fler...
de Ståhl, Teresita D ... (12)
Andersson, Robin (11)
Bruder, Carl E G (11)
Díaz de Ståhl, Teres ... (11)
Rasi, Chiara (11)
Ingelsson, Martin (10)
Komorowski, Jan (10)
Sandgren, Johanna (10)
Forsberg, Lars A., 1 ... (10)
Zegarski, Wojciech (9)
Filipowicz, Natalia (9)
Forsberg, Lars A. (9)
Lannfelt, Lars (8)
Giedraitis, Vilmanta ... (8)
Benetkiewicz, Magdal ... (8)
Jankowski, Michal (8)
Srutek, Ewa (8)
Rychlicka-Buniowska, ... (8)
De Bustos, Cecilia (7)
Olszewski, Paweł (7)
Danielsson, Marcus (7)
Halvardson, Jonatan, ... (7)
Lind, Lars (6)
Mattisson, Jonas (6)
Przewoźnik, Marcin (6)
Ryś, Janusz (6)
Pedersen, Nancy L (5)
Nord, Helena (5)
Absher, Devin (5)
Bala, Dariusz (5)
Bruhn-Olszewska, Boz ... (5)
Jaszczyński, Janusz (5)
Ingelsson, Erik (4)
Tiensuu Janson, Eva (4)
Westin, Gunnar (4)
Hansson, Caisa M (4)
Razzaghian, Hamid Re ... (4)
Kilander, Lena (4)
Lindgren, Cecilia M. (4)
Juhas, Ulana (4)
Wójcik, Magdalena (4)
Jąkalski, Marcin (4)
Bogdan, Adam (4)
Bieńkowski, Michał (4)
visa färre...
Lärosäte
Uppsala universitet (81)
Karolinska Institutet (17)
Göteborgs universitet (4)
Lunds universitet (4)
Högskolan i Gävle (2)
Södertörns högskola (2)
visa fler...
Umeå universitet (1)
Stockholms universitet (1)
Linköpings universitet (1)
Handelshögskolan i Stockholm (1)
visa färre...
Språk
Engelska (81)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (42)
Naturvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy