SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dunås Finn) "

Sökning: WFRF:(Dunås Finn)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altai, Mohamed, et al. (författare)
  • Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with (188)Re.
  • 2014
  • Ingår i: European Journal of Medicinal Chemistry. - : Elsevier BV. - 0223-5234 .- 1768-3254. ; 87, s. 519-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.
  •  
2.
  • Altai, Mohamed, et al. (författare)
  • Selection of an optimal cysteine-containing peptide-based chelator for labeling of Affibody molecules with 188-Re
  • 2013
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 40:Suppl. 2, s. S219-S220
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of 188Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all 188Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The 188Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of 188Re-ZHER2:V2 (3.1±0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental 188Re-ZHER2:2395 (172±32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of 188Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.
  •  
3.
  • Gast, Veronica, 1992, et al. (författare)
  • Engineering Saccharomyces cerevisiae for the production and secretion of Affibody molecules
  • 2022
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Affibody molecules are synthetic peptides with a variety of therapeutic and diagnostic applications. To date, Affibody molecules have mainly been produced by the bacterial production host Escherichia coli. There is an interest in exploring alternative production hosts to identify potential improvements in terms of yield, ease of production and purification advantages. In this study, we evaluated the feasibility of Saccharomyces cerevisiae as a production chassis for this group of proteins. RESULTS: We examined the production of three different Affibody molecules in S. cerevisiae and found that these Affibody molecules were partially degraded. An albumin-binding domain, which may be attached to the Affibody molecules to increase their half-life, was identified to be a substrate for several S. cerevisiae proteases. We tested the removal of three vacuolar proteases, proteinase A, proteinase B and carboxypeptidase Y. Removal of one of these, proteinase A, resulted in intact secretion of one of the targeted Affibody molecules. Removal of either or both of the two additional proteases, carboxypeptidase Y and proteinase B, resulted in intact secretion of the two remaining Affibody molecules. The produced Affibody molecules were verified to bind their target, human HER3, as potently as the corresponding molecules produced in E. coli in an in vitro surface-plasmon resonance binding assay. Finally, we performed a fed-batch fermentation with one of the engineered protease-deficient S. cerevisiae strains and achieved a protein titer of 530 mg Affibody molecule/L. CONCLUSION: This study shows that engineered S. cerevisiae has a great potential as a production host for recombinant Affibody molecules, reaching a high titer, and for proteins where endotoxin removal could be challenging, the use of S. cerevisiae obviates the need for endotoxin removal from protein produced in E. coli.
  •  
4.
  • Wållberg, Helena, et al. (författare)
  • HER2-Positive Tumors Imaged Within 1 Hour Using a Site-Specifically C-11-Labeled Sel-Tagged Affibody Molecule
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - Stockholm : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 53:9, s. 1446-1453
  • Tidskriftsartikel (refereegranskat)abstract
    • A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for individualizing therapy and predicting prognoses. In vivo imaging methods are available but not yet in clinical practice; new methodologies improving speed, sensitivity, and specificity are required. Methods: A HER2-binding Affibody molecule, Z(HER2:342), was recombinantly fused with a C-terminal selenocysteine-containing tetrapeptide Sel-tag, allowing site-specific labeling with either C-11 or Ga-68, followed by biodistribution studies with small-animal PET. Dosimetry data for the 2 radiotracers were compared. Imaging of HER2-expressing human tumor xenografts was performed using the C-11-labeled Affibody molecule. Results: Both the C-11- and Ga-68-labeled tracers initially cleared rapidly from the blood, followed by a slower decrease to 4-5 percentage injected dose per gram of tissue at 1 h. Final retention in the kidneys was much lower (>5-fold) for the C-11-labeled protein, and its overall absorbed dose was considerably lower. C-11-Z(HER2:342) showed excellent tumor-targeting capability, with almost 10 percentage injected dose per gram of tissue in HER2-expressing tumors within 1 h. Specificity was demonstrated by preblocking binding sites with excess ligand, yielding significantly reduced radiotracer uptake (P = 0.002), comparable to uptake in tumors with low HER2 expression. Conclusion: To our knowledge, the Sel-tagging technique is the first that enables site-specific C-11-radiolabeling of proteins. Here we present the finding that, in a favorable combination between radionuclide half-life and in vivo pharmacokinetics of the Affibody molecules, C-11-labeled Set-tagged Z(HER2:342) can successfully be used for rapid and repeated PET studies of HER2 expression in tumors.
  •  
5.
  • Wållberg, Helena, et al. (författare)
  • Specific in vivo imaging of HER2-positive tumors within one hour using a site-specifically 11C-labeled Sel-tagged Affibody molecule
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for improvement of cancer care. In v ivo imaging methods are available, but are not yet in clinical practice; new methodologies improving speed, sensitivity and specificity are required. Here we describe promising results with a HER2‐binding Affibody molecule, ZHER2:342, recombinantly fused with a C‐terminal selenocysteine‐containing tetrapeptide Sel‐tag and site‐specifically labeled with either 11C or 68Ga for molecular imaging applications with positron emissiontomography (PET). In mice, both the 11C‐ and 68Ga‐labeled tracers initially cleared rapidly from the blood, followed by a slower decrease to 4‐5 %ID/g at 1 h. Final uptake in kidneys was much lower (> 5‐fold) for the 11C‐labeled protein, leading to markedly reduced background radioactivity in the abdomen. Furthermore, 11C‐labeled Sel‐tagged ZHER2:342 showed excellent tumor targeting capability, with almost 10 %ID/g in HER2 expressing tumors within the first hour. High specificity was demonstrated by preblocking the binding sites with excess ligand, which yielded low radiotracer uptakes, comparable to those in tumors with low endogenous HER2 expression. To our knowledge the Sel‐tagging technique is the first that enables site‐specific 11C radiolabelingof proteins. Here we present that, in a favorable combination between radionuclide half‐life and in vivo pharmacokinetics of the Affibody molecules, 11C‐labeled Sel taggedZHER2:342 can successfully be used for rapid and repeated PET studies of HER2 expression in tumors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy