SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dury M.) "

Sökning: WFRF:(Dury M.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, J., et al. (författare)
  • Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:11, s. 1396-1406
  • Tidskriftsartikel (refereegranskat)abstract
    • Human gut microbiota is an important determinant for health and disease, and recent studies emphasize the numerous factors shaping its diversity. Here we performed a genome-wide association study (GWAS) of the gut microbiota using two cohorts from northern Germany totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we identify genome-wide significant associations for overall microbial variation and individual taxa at multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe significant shifts in the microbiota of Vdr(-/-) mice relative to control mice and correlations between the microbiota and serum measurements of selected bile and fatty acids in humans, including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 x 10(-8)) associations at multiple additional loci identify other important points of host-microbe intersection, notably several disease susceptibility genes and sterol metabolism pathway components. Non-genetic and genetic factors each account for approximately 10% of the variation in gut microbiota, whereby individual effects are relatively small.
  •  
2.
  •  
3.
  • Zabel, Florian, et al. (författare)
  • Large potential for crop production adaptation depends on available future varieties
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:16, s. 3870-3882
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change.
  •  
4.
  • Al-Dury, Samer, et al. (författare)
  • Impaired SARS-CoV-2-specific T-cell reactivity in patients with cirrhosis following mRNA COVID-19 vaccination
  • 2022
  • Ingår i: JHEP Reports. - : Elsevier BV. - 2589-5559. ; 4:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Cirrhosis entails elevated risk of COVID-19-associated mortality. This study determined T cell-mediated and antibody reactivity against the spike 1 (S1) protein of SARS-CoV-2 among 48 patients with cirrhosis and 39 healthy controls after mRNA COVID-19 vaccination. Methods: SARS-CoV-2-specific T-cell reactivity was measured by induced level of T cell-derived interferon-gamma (IFN-gamma) in blood cells stimulated ex vivo with multimeric peptides spanning the N-terminal portion of S1. S1-induced IFN-gamma was quantified before and after the 1st and 2nd vaccination (BNT162b2, Pfizer-BioNTech or mRNA-1273, Moderna) alongside serum IgG against the receptor-binding domain (RBD) within S1 (anti-RBD-S1 IgG). Results: T-cell reactivity against S1 was reduced in patients with cirrhosis after the 1st (p < 0.001 vs. controls) and 2nd (p < 0.001) vaccination. Sixty-eight percent of patients lacked detectable S1-specific T-cell reactivity after the 1st vaccination vs. 19% in controls (odds ratio 0.11, 95% CI 0.03-0.48, p = 0.003) and 36% remained devoid of reactivity after the 2nd vaccination vs. 6% in controls (odds ratio 0.12, 95% CI 0.03-0.59, p = 0.009). T-cell reactivity in cirrhosis remained significantly impaired after correction for potential confounders in multivariable analysis. Advanced cirrhosis (Child-Pugh class B) was associated with absent or lower T-cell responses (p < 0.05 vs. Child-Pugh class A). The deficiency of T-cell reactivity was paralleled by lower levels of anti-RBD-S1 IgG after the 1st (p < 0.001 vs. controls) and 2nd (p < 0.05) vaccination. Conclusions: Patients with cirrhosis show deficient T-cell reactivity against SARS-CoV-2 antigens along with diminished levels of anti-RBD-S1 IgG after dual COVID-19 vaccination, highlighting the need for vigilance and additional preventative measures. Clinical trial registration: EudraCT 2021-000349-42 Lay summary: T cells are a pivotal component in the defence against viruses. We show that patients with cirrhosis have impaired SARS-CoV-2-specific T-cell responses and lower antibody levels after mRNA vaccination against COVID-19 compared with healthy controls. Patients with more advanced liver disease exhibited particularly inferior vaccine responses. These results call for additional preventative measures in these patients. (C) 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL).
  •  
5.
  • Franke, James A., et al. (författare)
  • The GGCMI Phase 2 emulators : Global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:9, s. 3995-4018
  • Tidskriftsartikel (refereegranskat)abstract
    • Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase 2. The GGCMI Phase 2 experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: Atmospheric carbon dioxide (CO2) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: That growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological-mean yield response of all models with a simple polynomial in mean growing-season values. Climatological-mean yields are a central metric in climate change impact analysis; we show here that they can be captured without relying on interannual variations. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios; errors become significant only in some marginal lands where crops are not currently grown. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase 2 dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts.
  •  
6.
  • Franke, James A., et al. (författare)
  • The GGCMI Phase 2 experiment : Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:5, s. 2315-2336
  • Tidskriftsartikel (refereegranskat)abstract
    • Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen ("CTWN") for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.
  •  
7.
  •  
8.
  • Minoli, Sara, et al. (författare)
  • Global Response Patterns of Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigation
  • 2019
  • Ingår i: Earth's Future. - 2328-4277. ; 7:12, s. 1464-1480
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing temperature trends are expected to impact yields of major field crops by affecting various plant processes, such as phenology, growth, and evapotranspiration. However, future projections typically do not consider the effects of agronomic adaptation in farming practices. We use an ensemble of seven Global Gridded Crop Models to quantify the impacts and adaptation potential of field crops under increasing temperature up to 6 K, accounting for model uncertainty. We find that without adaptation, the dominant effect of temperature increase is to shorten the growing period and to reduce grain yields and production. We then test the potential of two agronomic measures to combat warming-induced yield reduction: (i) use of cultivars with adjusted phenology to regain the reference growing period duration and (ii) conversion of rainfed systems to irrigated ones in order to alleviate the negative temperature effects that are mediated by crop evapotranspiration. We find that cultivar adaptation can fully compensate global production losses up to 2 K of temperature increase, with larger potentials in continental and temperate regions. Irrigation could also compensate production losses, but its potential is highest in arid regions, where irrigation expansion would be constrained by water scarcity. Moreover, we discuss that irrigation is not a true adaptation measure but rather an intensification strategy, as it equally increases production under any temperature level. In the tropics, even when introducing both adapted cultivars and irrigation, crop production declines already at moderate warming, making adaptation particularly challenging in these areas.
  •  
9.
  • Müller, Christoph, et al. (författare)
  • Substantial Differences in Crop Yield Sensitivities Between Models Call for Functionality-Based Model Evaluation
  • 2024
  • Ingår i: Earth's Future. - 2328-4277. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Crop models are often used to project future crop yield under climate and global change and typically show a broad range of outcomes. To understand differences in modeled responses, we analyzed modeled crop yield response types using impact response surfaces along four drivers of crop yield: carbon dioxide (C), temperature (T), water (W), and nitrogen (N). Crop yield response types help to understand differences in simulated responses per driver and their combinations rather than aggregated changes in yields as the result of simultaneous changes in various drivers. We find that models' sensitivities to the individual drivers are substantially different and often more different across models than across regions. There is some agreement across models with respect to the spatial patterns of response types but strong differences in the distribution of response types across models and their configurations suggests that models need to undergo further scrutiny. We suggest establishing standards in model evaluation based on emergent functionality not only against historical yield observations but also against dedicated experiments across different drivers to analyze emergent functional patterns of crop models.
  •  
10.
  • Reyer, Christopher P. O., et al. (författare)
  • A plant's perspective of extremes : terrestrial plant responses to changing climatic variability
  • 2013
  • Ingår i: Global Change Biology. - HOBOKEN 07030-5774, NJ USA : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 19:1, s. 75-89
  • Forskningsöversikt (refereegranskat)abstract
    • We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy