SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dykhoff Henrik) "

Sökning: WFRF:(Dykhoff Henrik)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yucel, Yasemin Duygu, et al. (författare)
  • Enhancing Structural Battery Performance : Investigating the Role of Conductive Carbon Additives in LiFePO4-Impregnated Carbon Fiber Electrodes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This study centers on investigating the influence of conductive additives, carbon black (Super P) and graphene, within the context of LiFePO4 (LFP)-impregnated carbon fibers (CFs) produced using the powder impregnation method. The performance of these additives was subject to an electrochemical evaluation. The findings reveal that there are no substantial disparities between the two additives at lower cycling rates, highlighting their adaptability in conventional energy storage scenarios. However, as cycling rates increase, graphene emerges as the better performer. At a rate of 1.5C in a half-cell versus lithium, electrodes containing graphene exhibited a discharge capacity of 83 mAh g-1LFP ; those with Super P and without any additional conductive additive showed a capacity of 65 mAh g-1LFP  and 48 mAh g-1LFP , respectively. This distinction is attributed to the structural and conductivity advantages inherent to graphene, showing its potential to enhance the electrochemical performance of structural batteries. Furthermore, LFP-impregnated CFs were evaluated in full cells versus pristine CFs, yielding relatively similar results, though with a slightly improved outcome observed with the graphene additive. These results provide valuable insights into the role of conductive additives in structural batteries and their responsiveness to varying operational conditions, underlining the potential for versatile energy storage solutions. 
  •  
2.
  • Yucel, Yasemin Duygu, et al. (författare)
  • Enhancing structural battery performance: Investigating the role of conductive carbon additives in LiFePO4-Impregnated carbon fiber electrodes
  • 2024
  • Ingår i: Composites Science And Technology. - : Elsevier BV. - 0266-3538 .- 1879-1050. ; 251
  • Tidskriftsartikel (refereegranskat)abstract
    • This study centers on investigating the influence of conductive additives, carbon black (Super P) and graphene, within the context of LiFePO4 (LFP)-impregnated carbon fibers (CFs) produced using the powder impregnation method. The performance of these additives was subject to an electrochemical evaluation. The findings reveal that there are no substantial disparities between the two additives at lower cycling rates, highlighting their adaptability in conventional energy storage scenarios. However, as cycling rates increase, graphene emerges as the better performer. At a rate of 1.5C in a half-cell versus lithium, electrodes containing graphene exhibited a discharge capacity of 83 mAhgLFP−1; those with Super P and without any additional conductive additive showed a capacity of 65 mAhgLFP−1 and 48 mAhgLFP−1, respectively. This distinction is attributed to the structural and conductivity advantages inherent to graphene, showing its potential to enhance the electrochemical performance of structural batteries. Furthermore, LFP-impregnated CFs were evaluated in full cells versus pristine CFs, yielding relatively similar results, though with a slightly improved outcome observed with the graphene additive. These results provide valuable insights into the role of conductive additives in structural batteries and their responsiveness to varying operational conditions, underlining the potential for versatile energy storage solutions.
  •  
3.
  • Yucel, Yasemin Duygu, et al. (författare)
  • Powder-impregnated carbon fibers with lithium iron phosphate as positive electrodes in structural batteries
  • 2023
  • Ingår i: Composites Science And Technology. - : Elsevier Ltd. - 0266-3538 .- 1879-1050. ; 241
  • Tidskriftsartikel (refereegranskat)abstract
    • A structural battery is a multifunctional battery that can carry a load while storing energy. Structural batteries have been a cutting-edge research focus in the last decade and are mainly based on polyacrylonitrile (PAN)-carbon fibers (CFs). In this work, positive electrodes based on PAN-carbon fibers were manufactured with powder impregnation (siphon impregnation) technique using a water-based slurry containing lithium iron phosphate (LFP) as the active electrode material and the water-soluble binder polyethylene glycol (PEG). Different coating compositions, electrode-drying temperatures, and coating parameters were investigated to optimize the coating uniformity and the electrochemical performances. Scanning electron microscopy results showed that the electrode materials coat the CFs uniformly, conformably, and individually. Electrochemical characterization of pouch cells shows that the electrodes containing 6 wt% PEG dried at 140 °C have the best battery performance, delivering a first discharge capacity of 151 mAh g−1 and capacity retention higher than 80% after 100 cycles. Moreover, excellent capacity reversibility was achieved when the electrodes were cycled at multiple C-rates attesting to their stability. The results demonstrate that CFs perform excellently as current collectors in positive electrodes. 
  •  
4.
  • Yucel, Yasemin Duygu, et al. (författare)
  • Structural Batteries with LiFePO4-Impregnated Carbon Fibers
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This study focuses on the fabrication and evaluation of structural batteries, emphasizing their electrochemical performance. LiFePO4 (LFP)-impregnated carbon fibers (CFs), produced via the powder impregnation method, were employed as positive electrodes. These electrodes underwent infusion with structural battery electrolyte (SBE) and curing to yield positive structural battery electrodes. A structural battery fully based on CFs was constructed and subjected to electrochemical testing, with positive electrodes assembled versus pristine CF of T800S as negative electrodes. The results revealed specific discharge capacities of 123 mAh g-1LFP for the structural positive electrode and 178 mAh g-1T800S for the structural battery, both at similar current densities. Both the half and full structural cells maintained capacities of 94% and 96%, respectively, during rate capability tests when reverting to their initial current densities. The electrochemical impedance spectroscopy (EIS) results revealed that, the structural battery demonstrated a relatively improved surface impedance, with the values ranging between 186 Ω cm² and 2000 Ω cm². Additionally, similar comparative studies were conducted on full cells in a commercial liquid electrolyte consisting of 1M LiPF6 in EC: DEC (1:1 vol.%). The research introduces a prototype of laminated composite batteries, showing their potential, especially when utilizing fully carbon fiber-based electrodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy