SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ebert Natalie) "

Sökning: WFRF:(Ebert Natalie)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bendig, Eileen, et al. (författare)
  • Internet-Based Interventions in Chronic Somatic Disease
  • 2018
  • Ingår i: Deutsches Ärzteblatt International. - : DEUTSCHER AERZTE-VERLAG GMBH. - 1866-0452. ; 115:38, s. 659-
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Clinical guidelines recommend psychosocial care as an integral part of medical treatment, but access is often limited. Technology-based approaches provide an attractive opportunity to optimize health outcomes and quality of life in people with chronic somatic diseases e.g. by means of Internet-and mobile-based interventions (IMIs). The present article provides an overview on the basics of IMIs, applications and their evidence base for people living with chronic somatic diseases. Methods: We conducted a selective literature search in the PubMed and Cochrane databases. Reviews which included randomized controlled trials investigating psychological IMIs were discussed pertaining to their relevance for the population described. Results: IMIs lead to a change in unfavorable behavior connected to chronic somatic diseases. IMIs can foster protective factors like balanced physical activity or risk factors like smoking or alcohol consumption. However, studies reveal small effect sizes of d=0.25 for physical activity and an averaged effect size of d=0.20 for smoking and alcohol consumption. Additionally, IMIs can be used for the (co-) treatment of chronic somatic diseases, for instance to increase disease-specific self-efficacy in patients with diabetes (d=0.23). Studies included in meta-analyses are often highly heterogenous and are investigated in research contexts with limited health care services relevance. Conclusion: IMIs are potentially effective when aiming at lifestyle changes and supporting medical treatment in people with chronic somatic diseases. However, results are still heterogenous and the evidence base is limited regarding specific settings, compounding the discussion of possible ways of implementing IMIs into our health-care systems.
  •  
2.
  • Björk, Jonas, et al. (författare)
  • GFR estimation based on standardized creatinine and cystatin C : A European multicenter analysis in older adults
  • 2018
  • Ingår i: Clinical Chemistry and Laboratory Medicine. - : Walter de Gruyter GmbH. - 1437-4331 .- 1434-6621. ; 56:3, s. 422-435
  • Tidskriftsartikel (refereegranskat)abstract
    • Although recommended by the Kidney Disease Improving Global Outcomes, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPICR) creatinine equation was not targeted to estimate glomerular filtration rate (eGFR) among older adults. The Berlin Initiative Study (BIS1CR) equation was specifically developed in older adults, and the Lund-Malmö revised (LMRCR) and the Full Age Spectrum (FASCR) equations have shown promising results in older adults. Our aim was to validate these four creatinine equations, including addition of cystatin C in a large multicenter cohort of Europeans ≥70 years. A total of 3226 individuals (2638 with cystatin C) underwent GFR measurement (mGFR; median, 44 mL/min/1.73 m2) using plasma iohexol clearance. Bias, precision (interquartile range [IQR]), accuracy (percent of estimates ±30% of mGFR, P30), eGFR accuracy diagrams and probability diagrams to classify mGFR<45 mL/min/1.73 m2 were compared. The overall results of BIS1CR/CKD-EPICR/FASCR/LMRCR were as follows: median bias, 1.7/3.6/0.6/-0.7 mL/min/1.73 m2; IQR, 11.6/12.3/11.1/10.5 mL/min/1.73 m2; and P30, 77.5%/76.4%/80.9%/83.5% (significantly higher for LMR, p<0.001). Substandard P30 (<75%) was noted for all equations at mGFR<30 mL/min/1.73 m2, and at body mass index values <20 and ≥35 kg/m2. LMRCR had the most stable performance across mGFR subgroups. Only LMRCR and FASCR had a relatively constant small bias across eGFR levels. Probability diagrams exhibited wide eGFR intervals for all equations where mGFR<45 could not be confidently ruled in or out. Adding cystatin C improved P30 accuracy to 85.7/86.8/85.7/88.7 for BIS2CR+CYS/CKD-EPICR+CYS/FASCR+CYS/MEANLMR+CAPA. LMRCR and FASCR seem to be attractive alternatives to CKD-EPICR in estimating GFR by creatinine-based equations in older Europeans. Addition of cystatin C leads to important improvement in estimation performance.
  •  
3.
  • Björk, Jonas, et al. (författare)
  • Prospects for improved glomerular filtration rate estimation based on creatinine—results from a transnational multicentre study
  • 2020
  • Ingår i: Clinical Kidney Journal. - : Oxford University Press (OUP). - 2048-8505 .- 2048-8513. ; 13:4, s. 674-683
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine equation is routinely used to assess renal function but exhibits varying accuracy depending on patient characteristics and clinical presentation. The overall aim of the present study was to assess if and to what extent glomerular filtration rate (GFR) estimation based on creatinine can be improved.MethodsIn a cross-sectional analysis covering the years 2003–17, CKD-EPI was validated against measured GFR (mGFR; using various tracer methods) in patients with high likelihood of chronic kidney disease (CKD; five CKD cohorts, n = 8365) and in patients with low likelihood of CKD (six community cohorts, n = 6759). Comparisons were made with the Lund–Malmö revised equation (LMR) and the Full Age Spectrum equation.Results7In patients aged 18–39 years old, CKD-EPI overestimated GFR with 5.0–16 mL/min/1.73 m2 in median in both cohort types at mGFR levels <120 mL/min/1.73 m2. LMR had greater accuracy than CKD-EPI in the CKD cohorts (P30, the percentage of estimated GFR within 30% of mGFR, 83.5% versus 76.6%). CKD-EPI was generally the most accurate equation in the community cohorts, but all three equations reached P30 above the Kidney Disease Outcomes Quality Initiative benchmark of 90%.ConclusionsNone of the evaluated equations made optimal use of available data. Prospects for improved GFR estimation procedures based on creatinine exist, particularly in young adults and in settings where patients with suspected or manifest CKD are investigated.
  •  
4.
  • Delanaye, Pierre, et al. (författare)
  • Age-adapted percentiles of measured glomerular filtration in healthy individuals : extrapolation to living kidney donors over 65 years.
  • 2022
  • Ingår i: Clinical Chemistry and Laboratory Medicine. - : Walter de Gruyter. - 1434-6621 .- 1437-4331. ; 60:3, s. 401-407
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Most data on glomerular filtration rate (GFR) originate from subjects <65 years old, complicating decision-making in elderly living kidney donors. In this retrospective multi-center study, we calculated percentiles of measured GFR (mGFR) in donors <65 years old and extrapolated these to donors ≥65 years old.METHODS: mGFR percentiles were calculated from a development cohort of French/Belgian living kidney donors <65 years (n=1,983), using quantiles modeled as cubic splines (two linear parts joining at 40 years). Percentiles were extrapolated and validated in an internal cohort of donors ≥65 years (n=147, France) and external cohort of donors and healthy subjects ≥65 years (n=329, Germany, Sweden, Norway, France, The Netherlands) by calculating percentages within the extrapolated 5th-95th percentile (P5-P95).RESULTS: Individuals in the development cohort had a higher mGFR (99.9 ± 16.4 vs. 86.4 ± 14 and 82.7 ± 15.5 mL/min/1.73 m2) compared to the individuals in the validation cohorts. In the internal validation cohort, none (0%) had mGFR below the extrapolated P5, 12 (8.2%) above P95 and 135 (91.8%) between P5-P95. In the external validation cohort, five subjects had mGFR below the extrapolated P5 (1.5%), 25 above P95 (7.6%) and 299 (90.9%) between P5-P95.CONCLUSIONS: We demonstrate that extrapolation of mGFR from younger donors is possible and might aid with decision-making in elderly donors.
  •  
5.
  • Delanaye, Pierre, et al. (författare)
  • Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research : A review. Part 1: How to measure glomerular filtration rate with iohexol?
  • 2016
  • Ingår i: Clinical Kidney Journal. - : Oxford University Press (OUP). - 2048-8505 .- 2048-8513. ; 9:5, s. 682-699
  • Forskningsöversikt (refereegranskat)abstract
    • While there is general agreement on the necessity tomeasure glomerular filtration rate (GFR) inmany clinical situations, there is less agreement on the bestmethod to achieve this purpose. As the gold standardmethod for GFR determination, urinary (or renal) clearance of inulin, fades into the background due to inconvenience and high cost, a diversity of filtrationmarkers and protocols compete to replace it. In this review, we suggest that iohexol, a non-ionic contrast agent, is most suited to replace inulin as the marker of choice for GFR determination. Iohexol comes very close to fulfilling all requirements for an ideal GFRmarker in terms of low extra-renal excretion, low protein binding and in being neither secreted nor reabsorbed by the kidney. In addition, iohexol is virtually non-Toxic and carries a low cost. As iohexol is stable in plasma, administration and sample analysis can be separated in both space and time, allowing access to GFR determination across different settings. An external proficiency programme operated by Equalis AB, Sweden, exists for iohexol, facilitating interlaboratory comparison of results. Plasma clearance measurement is the protocol of choice as it combines a reliable GFR determination with convenience for the patient. Single-sample protocols dominate, butmultiple-sample protocolsmay bemore accurate in specific situations. In lowGFRs one ormore late samples should be included to improve accuracy. In patients with large oedema or ascites, urinary clearance protocols should be employed. In conclusion, plasma clearance of iohexol may well be the best candidate for a common GFR determination method.
  •  
6.
  • Delanaye, Pierre, et al. (författare)
  • Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research : A review. Part 2: Why to measure glomerular filtration rate with iohexol?
  • 2016
  • Ingår i: Clinical Kidney Journal. - : Oxford University Press (OUP). - 2048-8505 .- 2048-8513. ; 9:5, s. 700-704
  • Forskningsöversikt (refereegranskat)abstract
    • A reliable assessment of glomerular filtration rate (GFR) is of paramount importance in clinical practice as well as epidemiological and clinical research settings. It is recommended by Kidney Disease: Improving Global Outcomes guidelines in specific populations (anorectic, cirrhotic, obese, renal and non-renal transplant patients) where estimation equations are unreliable. Measured GFR is the only valuable test to confirm or confute the status of chronic kidney disease (CKD), to evaluate the slope of renal function decay over time, to assess the suitability of living kidney donors and for dosing of potentially toxic medication with a narrowtherapeutic index. Abnormally elevated GFR or hyperfiltration in patients with diabetes or obesity can be correctly diagnosed only by measuring GFR. GFR measurement contributes to assessing the true CKD prevalence rate, avoiding discrepancies due to GFR estimation with different equations. Using measured GFR, successfully accomplished in large epidemiological studies, is the onlyway to study the potential link between decreased renal function and cardiovascular or total mortality, being sure that this association is not due to confounders, i.e. non-GFR determinants of biomarkers. In clinical research, it has been shown that measured GFR (or measured GFR slope) as a secondary endpoint as compared with estimated GFR detected subtle treatment effects and obtained these results with a comparatively smaller sample size than trials choosing estimated GFR. Measuring GFR by iohexol has several advantages: simplicity, low cost, stability and low interlaboratory variation. Iohexol plasma clearance represents the best chance for implementing a standardized GFR measurement protocol applicable worldwide both in clinical practice and in research.
  •  
7.
  • Delanaye, Pierre, et al. (författare)
  • Performance of creatinine-based equations to estimate glomerular filtration rate in White and Black populations in Europe, Brazil, and Africa
  • 2022
  • Ingår i: Nephrology, Dialysis and Transplantation. - : Oxford University Press. - 0931-0509 .- 1460-2385. ; 38:1, s. 106-118
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A new Chronic Kidney Disease Epidemiology equation without race variable has been recently proposed (CKD-EPIAS). This equation has neither been validated outside USA nor compared to the new European Kidney Function Consortium (EKFC) and Lund-Malmö Revised (LMREV) equations, developed in European cohorts.METHODS: Standardized creatinine and measured glomerular filtration rate (GFR) from the European EKFC cohorts (n = 13 856 including 6031 individuals in the external validation cohort), from France, (n = 4429, including 964 Black Europeans), from Brazil (n = 100), and from Africa (n = 508) were used to test the performances of the equations. A matched analysis between White Europeans and Black Africans or Black Europeans was performed.RESULTS: In White Europeans (n = 9496), both the EKFC and LMREV equations outperformed CKD-EPIAS (bias of -0.6 and -3.2, respectively versus 5.0 mL/min/1.73m², and accuracy within 30% of 86.9 and 87.4, respectively versus 80.9%). In Black Europeans and Black Africans, the best performance was observed with the EKFC equation using a specific Q-value ( = concentration of serum creatinine in healthy males and females). These results were confirmed in matched analyses, which showed that serum creatinine concentrations were different in White Europeans, Black Europeans, and Black Africans for the same measured GFR, age, sex and body mass index. Creatinine differences were more relevant in males.CONCLUSION: In a European and African cohort, the performances of CKD-EPIAS remain suboptimal. The EKFC equation, using usual or dedicated, population-specific Q-values presents the best performance in the whole age range in the European and African populations included in this study.
  •  
8.
  • Delanaye, Pierre, et al. (författare)
  • Performance of creatinine-based equations to estimate glomerular filtration rate with a methodology adapted to the context of drug dosage adjustment
  • 2022
  • Ingår i: British Journal of Clinical Pharmacology. - : Wiley-Blackwell Publishing Inc.. - 0306-5251 .- 1365-2125. ; 88:5, s. 2118-2127
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: The Cockcroft-Gault (CG) creatinine-based equation is still used to estimate glomerular filtration rate (eGFR) for drug dosage adjustment. Incorrect eGFR may lead to hazardous over- or underdosing METHODS: In a cross-sectional analysis, CG was validated against measured GFR (mGFR) in 14,804 participants and compared with the Modification-of-Diet-in-Renal-Diseases (MDRD), Chronic-Kidney-Disease-Epidemiology (CKD-EPI), Lund-Malmö-Revised (LMR), and European-Kidney-Function-Consortium (EKFC) equations. Validation focused on bias, imprecision, and accuracy (percentage of estimates within ±30% of mGFR, P30), overall and stratified for mGFR, age, and body mass index at mGFR <60 mL/min, as well as classification in mGFR stages.RESULTS: The CG equation performed worse than the other equations, overall and in mGFR, age and BMI subgroups in terms of bias (systematic overestimation), imprecision and accuracy except for patients ≥65 years where bias and P30 were similar to MDRD and CKD-EPI, but worse than LMR and EKFC. In subjects with mGFR<60 mL/min and at BMI [18.5-25[kg/m2 , all equations performed similarly and for BMI<18.5kg/m2 CG and LMR had the best results though all equations had poor P30-accuracy. At BMI≥25kg/m2 the bias of the CG increased with increasing BMI (+17.2mL/min at BMI≥40kg/m2 ). The four more recent equations also classified mGFR stages better than CG.CONCLUSIONS: The CG equation showed poor ability to estimate GFR overall and in analyses stratified for GFR, age, and BMI. CG was inferior to correctly classify the patients in the mGFR staging compared to more recent creatinine-based equations.
  •  
9.
  • Matsushita, Kunihiro, et al. (författare)
  • Measures of chronic kidney disease and risk of incident peripheral artery disease : a collaborative meta-analysis of individual participant data.
  • 2017
  • Ingår i: The Lancet Diabetes and Endocrinology. - 2213-8587 .- 2213-8595. ; 5:9, s. 718-728
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Some evidence suggests that chronic kidney disease is a risk factor for lower-extremity peripheral artery disease. We aimed to quantify the independent and joint associations of two measures of chronic kidney disease (estimated glomerular filtration rate [eGFR] and albuminuria) with the incidence of peripheral artery disease.METHODS: In this collaborative meta-analysis of international cohorts included in the Chronic Kidney Disease Prognosis Consortium (baseline measurements obtained between 1972 and 2014) with baseline measurements of eGFR and albuminuria, at least 1000 participants (this criterion not applied to cohorts exclusively enrolling patients with chronic kidney disease), and at least 50 peripheral artery disease events, we analysed adult participants without peripheral artery disease at baseline at the individual patient level with Cox proportional hazards models to quantify associations of creatinine-based eGFR, urine albumin-to-creatinine ratio (ACR), and dipstick proteinuria with the incidence of peripheral artery disease (including hospitalisation with a diagnosis of peripheral artery disease, intermittent claudication, leg revascularisation, and leg amputation). We assessed discrimination improvement through c-statistics.FINDINGS: We analysed 817 084 individuals without a history of peripheral artery disease at baseline from 21 cohorts. 18 261 cases of peripheral artery disease were recorded during follow-up across cohorts (median follow-up was 7·4 years [IQR 5·7-8·9], range 2·0-15·8 years across cohorts). Both chronic kidney disease measures were independently associated with the incidence of peripheral artery disease. Compared with an eGFR of 95 mL/min per 1·73 m(2), adjusted hazard ratios (HRs) for incident study-specific peripheral artery disease was 1·22 (95% CI 1·14-1·30) at an eGFR of 45 mL/min per 1·73 m(2) and 2·06 (1·70-2·48) at an eGFR of 15 mL/min per 1·73 m(2). Compared with an ACR of 5 mg/g, the adjusted HR for incident study-specific peripheral artery disease was 1·50 (1·41-1·59) at an ACR of 30 mg/g and 2·28 (2·12-2·44) at an ACR of 300 mg/g. The adjusted HR at an ACR of 300 mg/g versus 5 mg/g was 3·68 (95% CI 3·00-4·52) for leg amputation. eGFR and albuminuria contributed multiplicatively (eg, adjusted HR 5·76 [4·90-6·77] for incident peripheral artery disease and 10·61 [5·70-19·77] for amputation in eGFR <30 mL/min per 1·73 m(2) plus ACR ≥300 mg/g or dipstick proteinuria 2+ or higher vs eGFR ≥90 mL/min per 1·73 m(2) plus ACR <10 mg/g or dipstick proteinuria negative). Both eGFR and ACR significantly improved peripheral artery disease risk discrimination beyond traditional predictors, with a substantial improvement prediction of amputation with ACR (difference in c-statistic 0·058, 95% CI 0·045-0·070). Patterns were consistent across clinical subgroups.INTERPRETATION: Even mild-to-moderate chronic kidney disease conferred increased risk of incident peripheral artery disease, with a strong association between albuminuria and amputation. Clinical attention should be paid to the development of peripheral artery disease symptoms and signs in people with any stage of chronic kidney disease.FUNDING: American Heart Association, US National Kidney Foundation, and US National Institute of Diabetes and Digestive and Kidney Diseases.
  •  
10.
  • Pottel, Hans, et al. (författare)
  • Cystatin C–Based Equation to Estimate GFR without the Inclusion of Race and Sex
  • 2023
  • Ingår i: The New England journal of medicine. - : Massachusetts Medical Society. - 0028-4793 .- 1533-4406. ; 388:4, s. 333-343
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUNDThe accuracy of estimation of kidney function with the use of routine metabolic tests, such as measurement of the serum creatinine level, has been controversial. The European Kidney Function Consortium (EKFC) developed a creatinine-based equation (EKFC eGFRcr) to estimate the glomerular filtration rate (GFR) with a rescaled serum creatinine level (i.e., the serum creatinine level is divided by the median serum creatinine level among healthy persons to control for variation related to differences in age, sex, or race). Whether a cystatin C–based EKFC equation would increase the accuracy of estimated GFR is unknown.METHODSWe used data from patients in Sweden to estimate the rescaling factor for the cystatin C level in adults. We then replaced rescaled serum creatinine in the EKFC eGFRcr equation with rescaled cystatin C, and we validated the resulting EKFC eGFRcys equation in cohorts of White patients and Black patients in Europe, the United States, and Africa, according to measured GFR, levels of serum creatinine and cystatin C, age, and sex.RESULTSOn the basis of data from 227,643 patients in Sweden, the rescaling factor for cystatin C was estimated at 0.83 for men and women younger than 50 years of age and 0.83+0.005×(age–50) for those 50 years of age or older. The EKFC eGFRcys equation was unbiased, had accuracy that was similar to that of the EKFC eGFRcr equation in both White patients and Black patients (11,231 patients from Europe, 1093 from the United States, and 508 from Africa), and was more accurate than the Chronic Kidney Disease Epidemiology Collaboration eGFRcys equation recommended by Kidney Disease: Improving Global Outcomes. The arithmetic mean of EKFC eGFRcr and EKFC eGFRcys further improved the accuracy of estimated GFR over estimates from either biomarker equation alone.CONCLUSIONSThe EKFC eGFRcys equation had the same mathematical form as the EKFC eGFRcr equation, but it had a scaling factor for cystatin C that did not differ according to race or sex. In cohorts from Europe, the United States, and Africa, this equation improved the accuracy of GFR assessment over that of commonly used equations.
  •  
11.
  • Pottel, Hans, et al. (författare)
  • Cystatin C–Based Equation to Estimate GFR without the Inclusion of Race and Sex
  • 2023
  • Ingår i: New England Journal of Medicine. - : Massachusetts Medical Society. - 0028-4793 .- 1533-4406. ; 388:4, s. 333-343
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe accuracy of estimation of kidney function with the use of routine metabolic tests, such as measurement of the serum creatinine level, has been controversial. The European Kidney Function Consortium (EKFC) developed a creatinine-based equation (EKFC eGFRcr) to estimate the glomerular filtration rate (GFR) with a rescaled serum creatinine level (i.e., the serum creatinine level is divided by the median serum creatinine level among healthy persons to control for variation related to differences in age, sex, or race). Whether a cystatin C–based EKFC equation would increase the accuracy of estimated GFR is unknown.MethodsWe used data from patients in Sweden to estimate the rescaling factor for the cystatin C level in adults. We then replaced rescaled serum creatinine in the EKFC eGFRcr equation with rescaled cystatin C, and we validated the resulting EKFC eGFRcys equation in cohorts of White patients and Black patients in Europe, the United States, and Africa, according to measured GFR, levels of serum creatinine and cystatin C, age, and sex.ResultsOn the basis of data from 227,643 patients in Sweden, the rescaling factor for cystatin C was estimated at 0.83 for men and women younger than 50 years of age and 0.83+0.005×(age–50) for those 50 years of age or older. The EKFC eGFRcys equation was unbiased, had accuracy that was similar to that of the EKFC eGFRcr equation in both White patients and Black patients (11,231 patients from Europe, 1093 from the United States, and 508 from Africa), and was more accurate than the Chronic Kidney Disease Epidemiology Collaboration eGFRcys equation recommended by Kidney Disease: Improving Global Outcomes. The arithmetic mean of EKFC eGFRcr and EKFC eGFRcys further improved the accuracy of estimated GFR over estimates from either biomarker equation alone.ConclusionsThe EKFC eGFRcys equation had the same mathematical form as the EKFC eGFRcr equation, but it had a scaling factor for cystatin C that did not differ according to race or sex. In cohorts from Europe, the United States, and Africa, this equation improved the accuracy of GFR assessment over that of commonly used equations. (Funded by the Swedish Research Council.)
  •  
12.
  • Pottel, Hans, et al. (författare)
  • Development and Validation of a Modified Full Age Spectrum Creatinine-Based Equation to Estimate Glomerular Filtration Rate : A Cross-sectional Analysis of Pooled Data
  • 2021
  • Ingår i: Annals of Internal Medicine. - : American College of Physicians. - 0003-4819 .- 1539-3704. ; 174:2, s. 183-191
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The Chronic Kidney Disease in Children Study (CKiD) equation for children and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation for adults are recommended serum creatinine (SCr)-based calculations for estimating glomerular filtration rate (GFR). However, these equations, as well as their combination, have limitations, notably the problem of implausible changes in GFR during the transition from adolescence to adulthood and overestimation of GFR in young adults. The full age spectrum (FAS) equation addresses these issues but overestimates GFR when SCr levels are low.OBJECTIVE: To develop and validate a modified FAS SCr-based equation combining design features of the FAS and CKD-EPI equations.DESIGN: Cross-sectional analysis with separate pooled data sets for development and validation.SETTING:  = 13) with measured GFR available.PATIENTS: 11 251 participants in 7 studies (development and internal validation data sets) and 8378 participants in 6 studies (external validation data set).MEASUREMENTS: Clearance of an exogenous marker (reference method), SCr level, age, sex, and height were used to develop a new equation to estimate GFR.RESULTS: ] in adults) across the FAS (2 to 90 years) and SCr range (40 to 490 µmol/L [0.45 to 5.54 mg/dL]) and with fewer estimation errors exceeding 30% (6.5% [CI, 3.8% to 9.1%] in children and 3.1% [CI, 2.5% to 3.6%] in adults) compared with the CKiD and CKD-EPI equations.LIMITATION: No Black patients were included.CONCLUSION: The new EKFC equation shows improved accuracy and precision compared with commonly used equations for estimating GFR from SCr levels.PRIMARY FUNDING SOURCE: Swedish Research Council (Vetenskapsrådet).
  •  
13.
  • Pottel, Hans, et al. (författare)
  • Standardization of serum creatinine is essential for accurate use of unbiased estimated GFR equations : evidence from three cohorts matched on renal function
  • 2022
  • Ingår i: Clinical Kidney Journal. - : Oxford University Press. - 2048-8505 .- 2048-8513. ; 15:12, s. 2258-2265
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Differences in the performance of estimated glomerular filtration rate (eGFR) equations have been attributed to the mathematical form of the equations and to differences between patient demographics and measurement methods. We evaluated differences in serum creatinine (SCr) and eGFR in cohorts matched for age, sex, body mass index (BMI) and measured GFR (mGFR).Methods: White North Americans from Minnesota (n = 1093) and the Chronic Renal Insufficiency Cohort (CRIC) (n = 1548) and White subjects from the European Kidney Function Consortium (EKFC) cohort (n = 7727) were matched for demographic patient characteristics (sex, age +/- 3 years, BMI +/- 2.5 kg/m(2)) and renal function (mGFR +/- 3 ml/min/1.73 m(2)). SCr was measured with isotope dilution mass spectrometry (IDMS)-traceable assays in the Minnesota and EKFC cohorts and with non-standardized SCr assays recalculated to IDMS in the CRIC. The Minnesota cohort and CRIC shared a common method to measure GFR (renal clearance of iothalamate), while the EKFC cohort used a variety of exogenous markers and methods, all with recognized sufficient accuracy. We compared the SCr levels and eGFR predictions [for Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and EKFC equations] of patients fulfilling these matching criteria.Results: For 305 matched individuals, mean SCr (mg/dL) was not different between the Minnesota and EKFC cohorts (females 0.83 +/- 0.20 versus 0.86 +/- 0.23, males 1.06 +/- 0.23 versus 1.12 +/- 0.37; P > .05) but significantly different from the CRIC [females 1.13 +/- 0.23 (P < .0001), males 1.42 +/- 0.31 (P < .0001)]. The CKD-EPI equations performed better than the EKFC equation in the CRIC, while the opposite was true in the Minnesota and EKFC cohorts.Conclusion: Significant differences in SCr concentrations between the Minnesota and EKFC cohorts versus CRIC were observed in subjects with the same level of mGFR and equal demographic characteristics and can be explained by the difference in SCr calibration.Lay Summary: Standardization of serum creatinine (SCr) measurement is fundamental for estimating glomerular filtration rate (GFR). We used data with GFR measured by a reference method from three cohorts: Chronic Renal Insufficiency Cohort (CRIC, n = 1548), Minnesota cohort (n = 1093) and European Kidney Function Consortium cohort (EKFC; n = 7727). In the EKFC and Minnesota cohorts, SCr was measured by standardized methods, although SCr 'calibration' was more debatable in the CRIC. GFR was measured by the same method in the CRIC and Minnesota cohort. Then we matched 305 White subjects for sex, measured GFR (+/- 3 ml/min/1.73 m(2)), age (+/- 3 years) and body mass index (+/- 2.5 kg/m(2)). From these matched subjects we showed that the association between SCr and measured GFR was quite similar between subjects from the Minnesota and EKFC cohorts, but different between the CRIC and EKFC cohort and between the Minnesota cohort and CRIC. These differences lead to discrepancies in the analysis of the performance of different creatinine-based equations.
  •  
14.
  • Stanaway, Jeffrey D., et al. (författare)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Ebert, Natalie (13)
Schaeffner, Elke (12)
Björk, Jonas (10)
Nyman, Ulf (10)
Delanaye, Pierre (10)
Mariat, Christophe (10)
visa fler...
Melsom, Toralf (9)
Hansson, Magnus (8)
Grubb, Anders (8)
Pottel, Hans (8)
Dubourg, Laurence (8)
Larsson, Anders (7)
Littmann, Karin (7)
Åkesson, Anna (7)
Lamb, Edmund J. (7)
Cavalier, Etienne (7)
Eriksen, Björn O (6)
Kamar, Nassim (5)
Courbebaisse, Marie (5)
Couzi, Lionel (5)
Gaillard, Francois (5)
Garrouste, Cyril (5)
Legendre, Christophe (5)
Rostaing, Lionel (5)
Rule, Andrew D. (5)
Sundin, Per-Ola, 197 ... (5)
Dalton, R Neil (4)
Jacquemont, Lola (4)
Bäck, Sten Erik (3)
Eriksen, Bjørn Odvar (3)
Åsling-Monemi, Kajsa (3)
Bökenkamp, Arend (3)
Remuzzi, Giuseppe (3)
Vidal-Petiot, Emmanu ... (3)
Sumaili, Ernest K (3)
Sterner, Gunnar (2)
Coresh, Josef (2)
Soveri, Inga, 1978- (2)
Ballew, Shoshana H. (2)
Christensson, Anders (2)
Jones, Ian (2)
Sundin, Per-Ola (2)
Turner, Stephen (2)
Berg, Ulla (2)
Matsushita, Kunihiro (2)
Cirillo, Massimo (2)
Gaspari, Flavio (2)
Porrini, Esteban (2)
Ruggenenti, Piero (2)
Bukabau, Justine B (2)
visa färre...
Lärosäte
Lunds universitet (10)
Karolinska Institutet (10)
Uppsala universitet (9)
Örebro universitet (5)
Högskolan Dalarna (2)
Umeå universitet (1)
visa fler...
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy