SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eckstein HH) "

Sökning: WFRF:(Eckstein HH)

  • Resultat 1-41 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Kontos, C, et al. (författare)
  • Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 5981-
  • Tidskriftsartikel (refereegranskat)abstract
    • Targeting a specific chemokine/receptor axis in atherosclerosis remains challenging. Soluble receptor-based strategies are not established for chemokine receptors due to their discontinuous architecture. Macrophage migration-inhibitory factor (MIF) is an atypical chemokine that promotes atherosclerosis through CXC-motif chemokine receptor-4 (CXCR4). However, CXCR4/CXCL12 interactions also mediate atheroprotection. Here, we show that constrained 31-residue-peptides (‘msR4Ms’) designed to mimic the CXCR4-binding site to MIF, selectively bind MIF with nanomolar affinity and block MIF/CXCR4 without affecting CXCL12/CXCR4. We identify msR4M-L1, which blocks MIF- but not CXCL12-elicited CXCR4 vascular cell activities. Its potency compares well with established MIF inhibitors, whereas msR4M-L1 does not interfere with cardioprotective MIF/CD74 signaling. In vivo-administered msR4M-L1 enriches in atherosclerotic plaques, blocks arterial leukocyte adhesion, and inhibits atherosclerosis and inflammation in hyperlipidemic Apoe−/− mice in vivo. Finally, msR4M-L1 binds to MIF in plaques from human carotid-endarterectomy specimens. Together, we establish an engineered GPCR-ectodomain-based mimicry principle that differentiates between disease-exacerbating and -protective pathways and chemokine-selectively interferes with atherosclerosis.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  • Pelisek, J, et al. (författare)
  • Biobanking: Objectives, Requirements, and Future Challenges-Experiences from the Munich Vascular Biobank
  • 2019
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Collecting biological tissue samples in a biobank grants a unique opportunity to validate diagnostic and therapeutic strategies for translational and clinical research. In the present work, we provide our long-standing experience in establishing and maintaining a biobank of vascular tissue samples, including the evaluation of tissue quality, especially in formalin-fixed paraffin-embedded specimens (FFPE). Our Munich Vascular Biobank includes, thus far, vascular biomaterial from patients with high-grade carotid artery stenosis (n = 1567), peripheral arterial disease (n = 703), and abdominal aortic aneurysm (n = 481) from our Department of Vascular and Endovascular Surgery (January 2004–December 2018). Vascular tissue samples are continuously processed and characterized to assess tissue morphology, histological quality, cellular composition, inflammation, calcification, neovascularization, and the content of elastin and collagen fibers. Atherosclerotic plaques are further classified in accordance with the American Heart Association (AHA), and plaque stability is determined. In order to assess the quality of RNA from FFPE tissue samples over time (2009–2018), RNA integrity number (RIN) and the extent of RNA fragmentation were evaluated. Expression analysis was performed with two housekeeping genes—glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin (ACTB)—using TaqMan-based quantitative reverse-transcription polymerase chain reaction (qRT)-PCR. FFPE biospecimens demonstrated unaltered RNA stability over time for up to 10 years. Furthermore, we provide a protocol for processing tissue samples in our Munich Vascular Biobank. In this work, we demonstrate that biobanking is an important tool not only for scientific research but also for clinical usage and personalized medicine.
  •  
30.
  • Reutersberg, B, et al. (författare)
  • CXCR4 - a possible serum marker for risk stratification of abdominal aortic aneurysms
  • 2023
  • Ingår i: VASA. Zeitschrift fur Gefasskrankheiten. - : Hogrefe Publishing Group. - 0301-1526. ; 52:2, s. 124-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: Background: Abdominal aortic aneurysm (AAA) rupture is still associated with a mortality rate of 80–90%. Imaging techniques or molecular fingerprinting for patient-specific risk stratification to identify pending rupture are still lacking. The chemokine (C-X-C motif) receptor (CXCR4) activation by CXCL12 ligand has been identified as a marker of inflammation and atherosclerosis, associated with AAA. Both are highly expressed in the aortic aneurysm wall. However, it is still unclear whether different expression levels of CXCR4 and CXCL12 can distinguish ruptured AAAs (rAAA) from intact AAAs (iAAA). Patients and methods: Abdominal aortic tissue samples (rAAA: n=29; iAAA: n=54) were excised during open aortic repair. Corresponding serum samples from these patients (n=9 from rAAAs; n=47 from iAAA) were drawn pre-surgery. Healthy aortic tissue samples (n=8) obtained from adult kidney donors during transplantation and serum samples from healthy adult volunteers were used as controls (n=5 each). Results: CXCR4 was mainly expressed in the media of the aneurysmatic tissue. Focal positive staining was also observed in areas of inflammatory infiltrates within the adventitia. In tissue lysates, no significant differences between iAAA, rAAA, and healthy controls were observed upon ELISA analysis. In serum samples, the level of CXCR4 was significantly increased in rAAA by 4-fold compared to healthy controls ( p=0.011) and 3.0-fold for rAAA compared to iAAA ( p<0.001). Furthermore a significant positive correlation between aortic diameter and serum CXCR4 concentration was found for both, iAAA and rAAA ( p=0.042). Univariate logistic regression analysis showed that increased CXCR4 serum concentrations were associated with AAA rupture (OR: 4.28, 95% CI: 1.95–12.1, p=0.001). Conclusions: CXCR4 concentration was significantly increased in serum of rAAA patients and showed a significant correlation with an increased aortic diameter. The level of CXCR4 in serum was associated with a more than 4-fold risk increase for rAAA and thus could possibly serve as a biomarker in the future. However, further validation in larger studies is required.
  •  
31.
  • Reutersberg, B, et al. (författare)
  • CXCR4 - a possible serum marker for risk stratification of abdominal aortic aneurysms
  • 2023
  • Ingår i: VASA. Zeitschrift fur Gefasskrankheiten. - : Hogrefe Publishing Group. - 0301-1526. ; 52:2, s. 124-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: Background: Abdominal aortic aneurysm (AAA) rupture is still associated with a mortality rate of 80–90%. Imaging techniques or molecular fingerprinting for patient-specific risk stratification to identify pending rupture are still lacking. The chemokine (C-X-C motif) receptor (CXCR4) activation by CXCL12 ligand has been identified as a marker of inflammation and atherosclerosis, associated with AAA. Both are highly expressed in the aortic aneurysm wall. However, it is still unclear whether different expression levels of CXCR4 and CXCL12 can distinguish ruptured AAAs (rAAA) from intact AAAs (iAAA). Patients and methods: Abdominal aortic tissue samples (rAAA: n=29; iAAA: n=54) were excised during open aortic repair. Corresponding serum samples from these patients (n=9 from rAAAs; n=47 from iAAA) were drawn pre-surgery. Healthy aortic tissue samples (n=8) obtained from adult kidney donors during transplantation and serum samples from healthy adult volunteers were used as controls (n=5 each). Results: CXCR4 was mainly expressed in the media of the aneurysmatic tissue. Focal positive staining was also observed in areas of inflammatory infiltrates within the adventitia. In tissue lysates, no significant differences between iAAA, rAAA, and healthy controls were observed upon ELISA analysis. In serum samples, the level of CXCR4 was significantly increased in rAAA by 4-fold compared to healthy controls ( p=0.011) and 3.0-fold for rAAA compared to iAAA ( p<0.001). Furthermore a significant positive correlation between aortic diameter and serum CXCR4 concentration was found for both, iAAA and rAAA ( p=0.042). Univariate logistic regression analysis showed that increased CXCR4 serum concentrations were associated with AAA rupture (OR: 4.28, 95% CI: 1.95–12.1, p=0.001). Conclusions: CXCR4 concentration was significantly increased in serum of rAAA patients and showed a significant correlation with an increased aortic diameter. The level of CXCR4 in serum was associated with a more than 4-fold risk increase for rAAA and thus could possibly serve as a biomarker in the future. However, further validation in larger studies is required.
  •  
32.
  • Sangha, GS, et al. (författare)
  • Effects of Iliac Stenosis on Abdominal Aortic Aneurysm Formation in Mice and Humans
  • 2019
  • Ingår i: Journal of vascular research. - : S. Karger AG. - 1423-0135 .- 1018-1172. ; 56:5, s. 217-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced lower-limb blood flow has been shown to lead to asymmetrical abdominal aortic aneurysms (AAAs) but the mechanism of action is not fully understood. Therefore, small animal ultrasound (Vevo2100, FUJIFILM VisualSonics) was used to longitudinally study mice that underwent standard porcine pancreatic elastase (PPE) infusion (<i>n</i> = 5), and PPE infusion with modified 20% iliac artery stenosis in the left (<i>n</i> = 4) and right (<i>n</i> = 5) iliac arteries. Human AAA computed tomography images were obtained from patients with normal (<i>n</i> = 9) or stenosed left (<i>n</i> = 2), right (<i>n</i> = 1), and bilateral (<i>n</i> = 1) iliac arteries. We observed rapid early growth and rightward expansion (8/9 mice) in the modified PPE groups (<i>p</i> &#x3c; 0.05), leading to slightly larger and asymmetric AAAs compared to the standard PPE group. Further examination showed a significant increase in TGFβ1 (<i>p</i> &#x3c; 0.05) and cellular infiltration (<i>p</i> &#x3c; 0.05) in the modified PPE group versus standard PPE mice. Congruent, yet variable, observations were made in human AAA patients with reduced iliac outflow compared to those with normal iliac outflow. Our results suggest that arterial stenosis at the time of aneurysm induction leads to faster AAA growth with aneurysm asymmetry and increased vascular inflammation after 8 weeks, indicating that moderate iliac stenosis may have upstream effects on AAA progression.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-41 av 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy