SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Egerton A) "

Sökning: WFRF:(Egerton A)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
2.
  •  
3.
  • Bennell, Kim L., et al. (författare)
  • Neuromuscular Versus Quadriceps Strengthening Exercise in Patients With Medial Knee Osteoarthritis and Varus Malalignment
  • 2014
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191. ; 66:4, s. 950-959
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. To compare the effects of neuromuscular exercise (NEXA) and quadriceps strengthening (QS) on the knee adduction moment (an indicator of medio-lateral distribution of knee load), pain, and physical function in patients with medial knee joint osteoarthritis (OA) and varus malalignment. Methods. One hundred patients with medial knee pain, mostly moderate-to-severe radiographic medial knee OA, and varus malalignment were randomly allocated to one of two 12-week exercise programs. Each program involved 14 individually supervised exercise sessions with a physiotherapist plus a home exercise component. Primary outcomes were peak external knee adduction moment (3-dimensional gait analysis), pain (visual analog scale), and self-reported physical function (Western Ontario and McMaster Universities Osteoarthritis Index). Results. Eighty-two patients (38 [76%] of 50 in the NEXA group and 44 [88%] of 50 in the QS group) completed the trial. There was no significant between-group difference in the change in the peak knee adduction moment (mean difference 0.13 Nm/[body weight x height]% [95% confidence interval (95% CI) -0.08, 0.33]), pain (mean difference 2.4 mm [95% CI -6.0, 10.8]), or physical function (mean difference -0.8 units [95% CI -4.0, 2.4]). Neither group showed a change in knee moments following exercise, whereas both groups showed similar significant reductions in pain and improvement in physical function. Conclusion. Although comparable improvements in clinical outcomes were observed with both neuromuscular and quadriceps strengthening exercise in patients with moderate varus malalignment and mostly moderate-to-severe medial knee OA, these forms of exercise did not affect the knee adduction moment, a key predictor of structural disease progression.
  •  
4.
  •  
5.
  • Heskel, Mary A., et al. (författare)
  • Convergence in the temperature response of leaf respiration across biomes and plant functional types
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:14, s. 3832-3837
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy