SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Egger Felix) "

Sökning: WFRF:(Egger Felix)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lang, Christian, et al. (författare)
  • C-Myc protein expression indicates unfavorable clinical outcome in surgically resected small cell lung cancer
  • 2024
  • Ingår i: World Journal of Surgical Oncology. - 1477-7819. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: By being highly involved in the tumor evolution and disease progression of small cell lung cancer (SCLC), Myc family members (C-Myc, L-Myc, and N-Myc) might represent promising targetable molecules. Our aim was to investigate the expression pattern and prognostic relevance of these oncogenic proteins in an international cohort of surgically resected SCLC tumors. Methods: Clinicopathological data and surgically resected tissue specimens from 104 SCLC patients were collected from two collaborating European institutes. Tissue sections were stained by immunohistochemistry (IHC) for all three Myc family members and the recently introduced SCLC molecular subtype-markers (ASCL1, NEUROD1, POU2F3, and YAP1). Results: IHC analysis showed C-Myc, L-Myc, and N-Myc positivity in 48%, 63%, and 9% of the specimens, respectively. N-Myc positivity significantly correlated with the POU2F3-defined molecular subtype (r = 0.6913, p = 0.0056). SCLC patients with C-Myc positive tumors exhibited significantly worse overall survival (OS) (20 vs. 44 months compared to those with C-Myc negative tumors, p = 0.0176). Ultimately, in a multivariate risk model adjusted for clinicopathological and treatment confounders, positive C-Myc expression was confirmed as an independent prognosticator of impaired OS (HR 1.811, CI 95% 1.054–3.113, p = 0.032). Conclusions: Our study provides insights into the clinical aspects of Myc family members in surgically resected SCLC tumors. Notably, besides showing that positivity of Myc family members varies across the patients, we also reveal that C-Myc protein expression independently correlates with worse survival outcomes. Further studies are warranted to investigate the role of Myc family members as potential prognostic and predictive markers in this hard-to-treat disease.
  •  
2.
  • Misra, Tvisha, et al. (författare)
  • A genetically encoded biosensor for visualising hypoxia responses in vivo
  • 2017
  • Ingår i: Biology Open. - : The Company of Biologists. - 2046-6390. ; 6:2, s. 296-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response.
  •  
3.
  • Redmer, Torben, et al. (författare)
  • JUN mediates the senescence associated secretory phenotype and immune cell recruitment to prevent prostate cancer progression
  • 2024
  • Ingår i: Molecular Cancer. - : BioMed Central (BMC). - 1476-4598. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood.Methods: We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment.Results: Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1β production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1β and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1β, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth.Conclusions: Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes. Graphical Abstract: (Figure presented.).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy