SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eguiluz Gracia I.) "

Sökning: WFRF:(Eguiluz Gracia I.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grewling, L., et al. (författare)
  • Outdoor airborne allergens: Characterization, behavior and monitoring in Europe
  • 2023
  • Ingår i: SCIENCE OF THE TOTAL ENVIRONMENT. - 0048-9697. ; 905
  • Tidskriftsartikel (refereegranskat)abstract
    • Aeroallergens or inhalant allergens, are proteins dispersed through the air and have the potential to induce allergic conditions such as rhinitis, conjunctivitis, and asthma. Outdoor aeroallergens are found predominantly in pollen grains and fungal spores, which are allergen carriers. Aeroallergens from pollen and fungi have seasonal emission patterns that correlate with plant pollination and fungal sporulation and are strongly associated with atmospheric weather conditions. They are released when allergen carriers come in contact with the respiratory system, e.g. the nasal mucosa. In addition, due to the rupture of allergen carriers, airborne allergen molecules may be released directly into the air in the form of micronic and submicronic particles (cytoplasmic debris, cell wall fragments, droplets etc.) or adhered onto other airborne particulate matter. Therefore, aeroallergen detection strategies must consider, in addition to the allergen carriers, the allergen molecules themselves. This review article aims to present the current knowledge on inhalant allergens in the outdoor environment, their structure, localization, and factors affecting their production, transformation, release or degradation. In addition, methods for collecting and quantifying aeroallergens are listed and thoroughly discussed. Finally, the knowledge gaps, challenges and implications associated with aeroallergen analysis are described.
  •  
2.
  • Roth-Walter, F., et al. (författare)
  • Metabolic pathways in immune senescence and inflammaging : Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology
  • Ingår i: Allergy: European Journal of Allergy and Clinical Immunology. - 0105-4538.
  • Tidskriftsartikel (refereegranskat)abstract
    • The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
  •  
3.
  • Eguíluz-Gracia, Ibon, et al. (författare)
  • Long-Term persistence of human donor alveolar macrophages in lung transplant recipients
  • 2016
  • Ingår i: Thorax. - : BMJ. - 0040-6376 .- 1468-3296. ; 71:11, s. 1006-1011
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Alveolar macrophages (AMFs) are critical regulators of lung function, and may participate in graft rejection following lung transplantation. Recent studies in experimental animals suggest that most AMFs are self-maintaining cells of embryonic origin, but knowledge about the ontogeny and life span of human AMFs is scarce. Methods To follow the origin and longevity of AMFs in patients with lung transplantation for more than 100â €..weeks, we obtained transbronchial biopsies from 10 gender-mismatched patients with lung transplantation. These were subjected to combined in situ hybridisation for X/Y chromosomes and immunofluorescence staining for macrophage markers. Moreover, development of AMFs in humanised mice reconstituted with CD34+ umbilical cord-derived cells was assessed. Results The number of donor-derived AMFs was unchanged during the 2â €..year post-Transplantation period. A fraction of the AMFs proliferated locally, demonstrating that at least a subset of human AMFs have the capacity to self-renew. Lungs of humanised mice were found to abundantly contain populations of human AMFs expressing markers compatible with a monocyte origin. Moreover, in patients with lung transplantation we found that recipient monocytes seeded the alveoli early after transplantation, and showed subsequent phenotypical changes consistent with differentiation into proliferating mature AMFs. This resulted in a stable mixed chimerism between donor and recipient AMFs throughout the 2-year period. Conclusions The finding that human AMFs are maintained in the lung parenchyma for several years indicates that pulmonary macrophage transplantation can be a feasible therapeutic option for patients with diseases caused by dysfunctional AMFs. Moreover, in a lung transplantation setting, long-Term persistence of donor AMFs may be important for the development of chronic graft rejection.
  •  
4.
  • Harcourt, R., et al. (författare)
  • Animal-borne telemetry: An integral component of the ocean observing toolkit
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6:JUN
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management. © 2019 Harcourt, Sequeira, Zhang, Roquet, Komatsu, Heupel, McMahon, Whoriskey, Meekan, Carroll, Brodie, Simpfendorfer, Hindell, Jonsen, Costa, Block, Muelbert, Woodward, Weise, Aarestrup, Biuw, Boehme, Bograd, Cazau, Charrassin, Cooke, Cowley, de Bruyn, Jeanniard du Dot, Duarte, Eguíluz, Ferreira, Fernández-Gracia, Goetz, Goto, Guinet, Hammill, Hays, Hazen, Hückstädt, Huveneers, Iverson, Jaaman, Kittiwattanawong, Kovacs, Lydersen, Moltmann, Naruoka, Phillips, Picard, Queiroz, Reverdin, Sato, Sims, Thorstad, Thums, Treasure, Trites, Williams, Yonehara and Fedak.
  •  
5.
  • Villasenor, A, et al. (författare)
  • Metabolomics in the Identification of Biomarkers of Asthma
  • 2021
  • Ingår i: Metabolites. - : MDPI AG. - 2218-1989. ; 11:6
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Asthma is a major non-communicable disease characterized by recurrent attacks of breathlessness and wheezing [...]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy