SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehrencrona H) "

Sökning: WFRF:(Ehrencrona H)

  • Resultat 1-38 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
4.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
5.
  • Antoniou, A. C., et al. (författare)
  • Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2009
  • Ingår i: Human Molecular Genetics. - [Antoniou, Antonis C.; McGuffog, Lesley; Peock, Susan; Cook, Margaret; Frost, Debra; Oliver, Clare; Platte, Radka; Pooley, Karen A.; Easton, Douglas F.] Univ Cambridge, Dept Publ Hlth & Primary Care, Canc Res UK Genet Epidemiol Unit, Cambridge, England. [Sinilnikova, Olga M.; Leone, Melanie] Univ Lyon, CNRS, Hosp Civils Lyon,Ctr Leon Berard,UMR5201, Unite Mixte Genet Constitut Canc Frequents, Lyon, France. [Healey, Sue; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Chenevix-Trench, Georgia] Queensland Inst Med Res, Brisbane, Qld 4029, Australia. [Nevanlinna, Heli; Heikkinen, Tuomas] Univ Helsinki, Cent Hosp, Dept Obstet & Gynecol, FIN-00290 Helsinki, Finland. [Simard, Jacques] Univ Laval, Quebec City, PQ, Canada. [Simard, Jacques] Univ Quebec, Ctr Hosp, Canada Res Chair Oncogenet, Canc Genom Lab, Quebec City, PQ, Canada. Peter MacCallum Canc Inst, Melbourne, Vic 3002, Australia. [Neuhausen, Susan L.; Ding, Yuan C.] Univ Calif Irvine, Dept Epidemiol, Irvine, CA USA. [Couch, Fergus J.; Wang, Xianshu; Fredericksen, Zachary] Mayo Clin, Rochester, MN USA. [Peterlongo, Paolo; Peissel, Bernard; Radice, Paolo] Fdn IRCCS Ist Nazl Tumori, Milan, Italy. [Peterlongo, Paolo; Radice, Paolo] Fdn Ist FIRC Oncol Molecolare, Milan, Italy. [Bonanni, Bernardo; Bernard, Loris] Ist Europeo Oncol, Milan, Italy. [Viel, Alessandra] IRCCS, Ctr Riferimento Oncol, Aviano, Italy. [Bernard, Loris] Cogentech, Consortium Genom Technol, Milan, Italy. [Szabo, Csilla I.] Mayo Clin, Coll Med, Dept Lab Med & Pathol, Rochester, MN USA. [Foretova, Lenka] Masaryk Mem Canc Inst, Dept Canc Epidemiol & Genet, Brno, Czech Republic. [Zikan, Michal] Charles Univ Prague, Dept Biochem & Expt Oncol, Fac Med 1, Prague, Czech Republic. [Claes, Kathleen] Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, Belgium. [Greene, Mark H.; Mai, Phuong L.] US Natl Canc Inst, Clin Genet Branch, Rockville, MD USA. [Rennert, Gad; Lejbkowicz, Flavio] CHS Natl Canc Control Ctr, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] Carmel Hosp, Dept Community Med & Epidemiol, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] B Rappaport Fac Med, Haifa, Israel. [Andrulis, Irene L.; Glendon, Gord] Canc Care Ontario, Ontario Canc Genet Network, Toronto, ON M5G 2L7, Canada. [Andrulis, Irene L.] Mt Sinai Hosp, Fred A Litwin Ctr Canc Genet, Samuel Lunenfeld Res Inst, Toronto, ON, Canada. [Andrulis, Irene L.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Gerdes, Anne-Marie; Thomassen, Mads] Odense Univ Hosp, Dept Biochem Pharmacol & Genet, DK-5000 Odense, Denmark. [Sunde, Lone] Aarhus Univ Hosp, Dept Clin Genet, DK-8000 Aarhus, Denmark. [Caligo, Maria A.] Univ Pisa, Div Surg Mol & Ultrastructural Pathol, Dept Oncol, Pisa, Italy. [Caligo, Maria A.] Pisa Univ Hosp, Pisa, Italy. [Laitman, Yael; Kontorovich, Tair; Cohen, Shimrit; Friedman, Eitan] Chaim Sheba Med Ctr, Susanne Levy Gertner Oncogenet Unit, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella] Chaim Sheba Med Ctr, Inst Oncol, IL-52621 Tel Hashomer, Israel. [Kaufman, Bella; Friedman, Eitan] Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. [Dagan, Efrat; Baruch, Ruth Gershoni] Rambam Med Ctr, Genet Inst, Haifa, Israel. [Harbst, Katja] Lund Univ, Dept Oncol, S-22100 Lund, Sweden. [Barbany-Bustinza, Gisela; Rantala, Johanna] Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden. [Ehrencrona, Hans] Uppsala Univ, Dept Genet & Pathol, Uppsala, Sweden. [Karlsson, Per] Sahlgrenska Univ, Dept Oncol, Gothenburg, Sweden. [Domchek, Susan M.; Nathanson, Katherine L.] Univ Penn, Philadelphia, PA 19104 USA. [Osorio, Ana; Benitez, Javier] Ctr Invest Biomed Red Enfermedades Raras CIBERERE, Inst Salud Carlos III, Madrid, Spain. [Osorio, Ana; Benitez, Javier] Spanish Natl Canc Ctr CNIO, Human Canc Genet Programme, Human Genet Grp, Madrid, Spain. [Blanco, Ignacio] Catalan Inst Oncol ICO, Canc Genet Counseling Program, Barcelona, Spain. [Lasa, Adriana] Hosp Santa Creu & Sant Pau, Genet Serv, Barcelona, Spain. [Hamann, Ute] Deutsch Krebsforschungszentrum, Neuenheimer Feld 580 69120, D-6900 Heidelberg, Germany. [Hogervorst, Frans B. L.] Netherlands Canc Inst, Dept Pathol, Family Canc Clin, NL-1066 CX Amsterdam, Netherlands. [Rookus, Matti A.] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands. [Collee, J. Margriet] Erasmus Univ, Dept Clin Genet, Rotterdam Family Canc Clin, Med Ctr, NL-3000 DR Rotterdam, Netherlands. [Devilee, Peter] Dept Genet Epidemiol, Leiden, Netherlands. [Wijnen, Juul] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, Leiden, Netherlands. [Ligtenberg, Marjolijn J.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 ED Nijmegen, Netherlands. [van der Luijt, Rob B.] Univ Utrecht, Med Ctr, Dept Clin Mol Genet, NL-3508 TC Utrecht, Netherlands. [Aalfs, Cora M.] Univ Amsterdam, Acad Med Ctr, Dept Clin Genet, NL-1105 AZ Amsterdam, Netherlands. [Waisfisz, Quinten] Vrije Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [van Roozendaal, Cornelis E. P.] Univ Med Ctr, Dept Clin Genet, Maastricht, Netherlands. [Evans, D. Gareth; Lalloo, Fiona] Cent Manchester Univ Hosp, NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England. [Eeles, Rosalind] Inst Canc Res, Translat Canc Genet Team, London SW3 6JB, England. [Eeles, Rosalind] Royal Marsden NHS Fdn Trust, London, England. [Izatt, Louise] Guys Hosp, Clin Genet, London SE1 9RT, England. [Davidson, Rosemarie] Ferguson Smith Ctr Clin Genet, Glasgow, Lanark, Scotland. [Chu, Carol] Yorkshire Reg Genet Serv, Leeds, W Yorkshire, England. [Eccles, Diana] Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [Cole, Trevor] Birmingham Womens Hosp Healthcare, NHS Trust, W Midlands Reg Genet Serv, Birmingham, W Midlands, England. [Hodgson, Shirley] Univ London, Dept Canc Genet, St Georges Hosp, London, England. [Godwin, Andrew K.; Daly, Mary B.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Stoppa-Lyonnet, Dominique] Univ Paris 05, Paris, France. [Stoppa-Lyonnet, Dominique] Inst Curie, INSERM U509, Serv Genet Oncol, Paris, France. [Buecher, Bruno] Inst Curie, Dept Genet, Paris, France. [Bressac-de Paillerets, Brigitte; Remenieras, Audrey; Lenoir, Gilbert M.] Inst Cancrol Gustave Roussy, Dept Genet, Villejuif, France. [Bressac-de Paillerets, Brigitte] Inst Cancerol Gustave Roussy, INSERM U946, Villejuif, France. [Caron, Olivier] Inst Cancerol Gustave Roussy, Dept Med, Villejuif, France. [Lenoir, Gilbert M.] Inst Cancerol Gustave Roussy, CNRS FRE2939, Villejuif, France. [Sevenet, Nicolas; Longy, Michel] Inst Bergonie, Lab Genet Constitutionnelle, Bordeaux, France. [Longy, Michel] Inst Bergonie, INSERM U916, Bordeaux, France. [Ferrer, Sandra Fert] Hop Hotel Dieu, Ctr Hosp, Lab Genet Chromosom, Chambery, France. [Prieur, Fabienne] CHU St Etienne, Serv Genet Clin Chromosom, St Etienne, France. [Goldgar, David] Univ Utah, Dept Dermatol, Salt Lake City, UT 84112 USA. [Miron, Alexander; Yassin, Yosuf] Dana Farber Canc Inst, Boston, MA 02115 USA. [John, Esther M.] No Calif Canc Ctr, Fremont, CA USA. [John, Esther M.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Buys, Saundra S.] Univ Utah, Hlth Sci Ctr, Huntsman Canc Inst, Salt Lake City, UT USA. [Hopper, John L.] Univ Melbourne, Melbourne, Australia. [Terry, Mary Beth] Columbia Univ, New York, NY USA. [Singer, Christian; Gschwantler-Kaulich, Daphne; Staudigl, Christine] Med Univ Vienna, Div Special Gynecol, Dept OB GYN, Vienna, Austria. [Hansen, Thomas V. O.] Univ Copenhagen, Rigshosp, Dept Clin Biochem, DK-2100 Copenhagen, Denmark. [Barkardottir, Rosa Bjork] Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland. [Kirchhoff, Tomas; Pal, Prodipto; Kosarin, Kristi; Offit, Kenneth] Mem Sloan Kettering Canc Ctr, Dept Med, Clin Genet Serv, New York, NY 10021 USA. [Piedmonte, Marion] Roswell Pk Canc Inst, GOG Stat & Data Ctr, Buffalo, NY 14263 USA. [Rodriguez, Gustavo C.] Evanston NW Healthcare, NorthShore Univ Hlth Syst, Evanston, IL 60201 USA. [Wakeley, Katie] Tufts Univ, New England Med Ctr, Boston, MA 02111 USA. [Boggess, John F.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Basil, Jack] St Elizabeth Hosp, Edgewood, KY 41017 USA. [Schwartz, Peter E.] Yale Univ, Sch Med, New Haven, CT 06510 USA. [Blank, Stephanie V.] New York Univ, Sch Med, New York, NY 10016 USA. [Toland, Amanda E.] Ohio State Univ, Dept Internal Med, Columbus, OH 43210 USA. [Toland, Amanda E.] Ohio State Univ, Div Human Canc Genet, Ctr Comprehens Canc, Columbus, OH 43210 USA. [Montagna, Marco; Casella, Cinzia] IRCCS, Ist Oncologico Veneto, Immunol & Mol Oncol Unit, Padua, Italy. [Imyanitov, Evgeny N.] NN Petrov Inst Res Inst, St Petersburg, Russia. [Allavena, Anna] Univ Turin, Dept Genet Biol & Biochem, Turin, Italy. [Schmutzler, Rita K.; Versmold, Beatrix; Arnold, Norbert] Univ Cologne, Dept Obstet & Gynaecol, Div Mol Gynaeco Oncol, Cologne, Germany. [Engel, Christoph] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany. [Meindl, Alfons] Tech Univ Munich, Dept Obstet & Gynaecol, Munich, Germany. [Ditsch, Nina] Univ Munich, Dept Obstet & Gynecol, Munich, Germany. Univ Schleswig Holstein, Dept Obstet & Gynaecol, Campus Kiel, Germany. [Niederacher, Dieter] Univ Duesseldorf, Dept Obstet & Gynaecol, Mol Genet Lab, Dusseldorf, Germany. [Deissler, Helmut] Univ Ulm, Dept Obstet & Gynaecol, Ulm, Germany. [Fiebig, Britta] Univ Regensburg, Inst Human Genet, Regensburg, Germany. [Suttner, Christian] Univ Heidelberg, Inst Human Genet, Heidelberg, Germany. [Schoenbuchner, Ines] Univ Wurzburg, Inst Human Genet, D-8700 Wurzburg, Germany. [Gadzicki, Dorothea] Med Univ, Inst Cellular & Mol Pathol, Hannover, Germany. [Caldes, Trinidad; de la Hoya, Miguel] Hosp Clinico San Carlos 28040, Madrid, Spain. : Oxford University Press. - 0964-6906 .- 1460-2083. ; 18:22, s. 4442-4456
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 × 10-4]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not. 
  •  
6.
  • Engel, C., et al. (författare)
  • Association of the variants CASP8 D302H and CASP10 V410I with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers
  • 2010
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2859-2868
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The genes caspase-8 (CASP8) and caspase-10 (CASP10) functionally cooperate and play a key role in the initiation of apoptosis. Suppression of apoptosis is one of the major mechanisms underlying the origin and progression of cancer. Previous case-control studies have indicated that the polymorphisms CASP8 D302H and CASP10 V410I are associated with a reduced risk of breast cancer in the general population.Methods: To evaluate whether the CASP8 D302H (CASP10 V410I) polymorphisms modify breast or ovarian cancer risk in BRCA1 and BRCA2 mutation carriers, we analyzed 7,353 (7,227) subjects of white European origin provided by 19 (18) study groups that participate in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A weighted cohort approach was used to estimate hazard ratios (HR) and 95% confidence intervals (95% CI).Results: The minor allele of CASP8 D302H was significantly associated with a reduced risk of breast cancer (per-allele HR, 0.85; 95% CI, 0.76-0.97; Ptrend = 0.011) and ovarian cancer (per-allele HR, 0.69; 95% CI, 0.53-0.89; Ptrend = 0.004) for BRCA1 but not for BRCA2 mutation carriers. The CASP10 V410I polymorphism was not associated with breast or ovarian cancer risk for BRCA1 or BRCA2 mutation carriers.Conclusions: CASP8 D302H decreases breast and ovarian cancer risk for BRCA1 mutation carriers but not for BRCA2 mutation carriers.Impact: The combined application of these and other recently identified genetic riskmodifiers could in the future allow better individual risk calculation and could aid in the individualized counseling and decision making with respect to preventive options in BRCA1 mutation carriers.
  •  
7.
  • Ilander, M, et al. (författare)
  • Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia.
  • 2017
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 31:5, s. 1108-1116
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies suggest that a proportion of chronic myeloid leukemia (CML) patients in deep molecular remission can discontinue the tyrosine kinase inhibitor (TKI) treatment without disease relapse. In this multi-center, prospective clinical trial (EURO-SKI, NCT01596114) we analyzed the function and phenotype of T and NK cells and their relation to successful TKI cessation. Lymphocyte subclasses were measured from 100 imatinib-treated patients at baseline and 1 month after the discontinuation, and functional characterization of NK and T cells was done from 45 patients. The proportion of NK cells was associated with the molecular relapse-free survival as patients with higher than median NK-cell percentage at the time of drug discontinuation had better probability to stay in remission. Similar association was not found with T or B cells or their subsets. In non-relapsing patients the NK-cell phenotype was mature, whereas patients with more naïve CD56(bright) NK cells had decreased relapse-free survival. In addition, the TNF-α/IFN-γ cytokine secretion by NK cells correlated with the successful drug discontinuation. Our results highlight the role of NK cells in sustaining remission and strengthen the status of CML as an immunogenic tumor warranting novel clinical trials with immunomodulating agents.Leukemia advance online publication, 16 December 2016; doi:10.1038/leu.2016.360.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  •  
13.
  • Hakkaart, C, et al. (författare)
  • Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers
  • 2022
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 1061-
  • Tidskriftsartikel (refereegranskat)abstract
    • The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09–1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.
  •  
14.
  •  
15.
  • Osorio, Ana, et al. (författare)
  • DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03-1.16), p = 2.7×10-3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03-1.21, p = 4.8×10-3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Yang, Xin, et al. (författare)
  • Cancer risks associated with germline PALB2 pathogenic variants : An international study of 524 families
  • 2020
  • Ingår i: Journal of Clinical Oncology. - 0732-183X. ; 38:7, s. 674-685
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 3 1022). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.
  •  
25.
  •  
26.
  • Antoniou, Antonis C., et al. (författare)
  • A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:10, s. 885-892
  • Tidskriftsartikel (refereegranskat)abstract
    • Germline BRCA1 mutations predispose to breast cancer. To identify genetic modifiers of this risk, we performed a genome-wide association study in 1,193 individuals with BRCA1 mutations who were diagnosed with invasive breast cancer under age 40 and 1,190 BRCA1 carriers without breast cancer diagnosis over age 35. We took forward 96 SNPs for replication in another 5,986 BRCA1 carriers (2,974 individuals with breast cancer and 3,012 unaffected individuals). Five SNPs on 19p13 were associated with breast cancer risk (P-trend = 2.3 x 10(-9) to Ptrend = 3.9 x 10(-7)), two of which showed independent associations (rs8170, hazard ratio (HR) = 1.26, 95% CI 1.17-1.35; rs2363956 HR = 0.84, 95% CI 0.80-0.89). Genotyping these SNPs in 6,800 population-based breast cancer cases and 6,613 controls identified a similar association with estrogen receptor-negative breast cancer (rs2363956 per-allele odds ratio (OR) = 0.83, 95% CI 0.75-0.92, P-trend = 0.0003) and an association with estrogen receptor-positive disease in the opposite direction (OR = 1.07, 95% CI 1.01-1.14, P-trend = 0.016). The five SNPs were also associated with triple-negative breast cancer in a separate study of 2,301 triple-negative cases and 3,949 controls (Ptrend = 1 x 10(-7) to Ptrend = 8 x 10(-5); rs2363956 per-allele OR = 0.80, 95% CI 0.74-0.87, P-trend = 1.1 x 10(-7)).
  •  
27.
  • Antoniou, Antonis C., et al. (författare)
  • Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:16, s. 3304-3321
  • Tidskriftsartikel (refereegranskat)abstract
    • Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r(2) = 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [ hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 x 10(-9) for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 x 10(-8) for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women.
  •  
28.
  • Cross, N C P, et al. (författare)
  • Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia.
  • 2015
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 29:5, s. 999-1003
  • Forskningsöversikt (refereegranskat)abstract
    • Treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors has advanced to a stage where many patients achieve very low or undetectable levels of disease. Remarkably, some of these patients remain in sustained remission when treatment is withdrawn, suggesting that they may be at least operationally cured of their disease. Accurate definition of deep molecular responses (MRs) is therefore increasingly important for optimal patient management and comparison of independent data sets. We previously published proposals for broad standardized definitions of MR at different levels of sensitivity. Here we present detailed laboratory recommendations, developed as part of the European Treatment and Outcome Study for CML (EUTOS), to enable testing laboratories to score MR in a reproducible manner for CML patients expressing the most common BCR-ABL1 variants.Leukemia advance online publication, 27 February 2015; doi:10.1038/leu.2015.29.
  •  
29.
  • Dobloug, S., et al. (författare)
  • A Swedish SCA34 family with late onset ataxia, cerebellar atrophy and ocular movement abnormalities with a novel mutation in ELOVL4
  • 2023
  • Ingår i: Parkinsonism & Related Disorders. - 1353-8020. ; 113:Suppl, s. 72-72
  • Konferensbidrag (refereegranskat)abstract
    • Background: To investigate the clinical and radiological presentation of anew ELOVL4mutation in a Swedish family.Methods:We compiled information on a Swedish family with 6 affectedmembers. Four of these had undergone neurological and radiological examinations. Two patients were independently analysed genetically bywhole exome or whole genome sequencing.Results: All examined affected family members showed slowly progressivecerebellar ataxia with balance impairment starting at between 42 and 70years, ocular movement disturbances with nystagmus, hypermetric saccades or vertical gaze palsy, and cerebellar atrophy on imaging. None of theaffected family members had erytrokeratodermia variabilis, but three haddry skin or psoriasis. Two members had seizures, one had intermittentmuscular cramps. One deceased obligate carrier had dementia and one ofthe members examined had mild cognitive dysfunction (MMSE 23/30). Oneindividual had poor night vision. One individual had a diagnosis ofschizophrenia since age 25 years. We identified a novel heterozygousvariant ELOVL4 c.511A>C, p.(Ile171Leu) (NM_022726.4) in affected individuals. When this was discovered in the first family member it was reported as a variant of uncertain significance (VUS). However, aftersegregation analysis and detailed clinical information for the entire family,the variant could be reclassified as likely pathogenic according to the ACMG classification system (PMID: 25741868) and Jarvik et al (PMID: 27236918).Conclusions: So far, including the present report, eight different ELOVL4-variants have been described in SCA34 patients. Our examinations provideadditional knowledge to the presentation of this rare neurodegenerativedisorder.
  •  
30.
  • Figlioli, G, et al. (författare)
  • The Spectrum of FANCM Protein Truncating Variants in European Breast Cancer Cases
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Germline protein truncating variants (PTVs) in the FANCM gene have been associated with a 2–4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of FANCM PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with FANCM PTVs ascertained in 20 centers from 13 European countries. We identified 27 different FANCM PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique FANCM PTVs, 15 have not been previously reported. We provide here the initial spectrum of FANCM PTVs in European breast cancer cases.
  •  
31.
  •  
32.
  • Glodzik, Dominik, et al. (författare)
  • Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative breast cancers
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Homologous recombination deficiency (HRD) is a defining characteristic in BRCA-deficient breast tumors caused by genetic or epigenetic alterations in key pathway genes. We investigated the frequency of BRCA1 promoter hypermethylation in 237 triple-negative breast cancers (TNBCs) from a population-based study using reported whole genome and RNA sequencing data, complemented with analyses of genetic, epigenetic, transcriptomic and immune infiltration phenotypes. We demonstrate that BRCA1 promoter hypermethylation is twice as frequent as BRCA1 pathogenic variants in early-stage TNBC and that hypermethylated and mutated cases have similarly improved prognosis after adjuvant chemotherapy. BRCA1 hypermethylation confers an HRD, immune cell type, genome-wide DNA methylation, and transcriptional phenotype similar to TNBC tumors with BRCA1-inactivating variants, and it can be observed in matched peripheral blood of patients with tumor hypermethylation. Hypermethylation may be an early event in tumor development that progress along a common pathway with BRCA1-mutated disease, representing a promising DNA-based biomarker for early-stage TNBC.
  •  
33.
  •  
34.
  • Karrman, Kristina, et al. (författare)
  • Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome.
  • 2009
  • Ingår i: Genes, chromosomes & cancer. - : Wiley. - 1098-2264 .- 1045-2257. ; 48:9, s. 795-805
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical characteristics and cytogenetic aberrations were ascertained and reviewed in a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias (T-ALLs) diagnosed between 1992 and 2006 in the Nordic countries. Informative karyotypic results were obtained in 249 (87%) cases, of which 119 (48%) were cytogenetically abnormal. Most (62%) of the aberrant T-ALLs were pseudodiploid. Structural changes were more common than numerical ones; 86% displayed at least one structural abnormality and 41% at least one numerical anomaly. The most frequent abnormalities were T-cell receptor (TCR) gene rearrangements (20%) [TCR;11p13 (10%), TCR;10q24 (3%), TCR;other (8%)], del(9p) (17%), +8 (14%), del(6q) (12%), and 11q23 rearrangements (6%). The TCR;other group comprised the rare rearrangements t(X;14)(p11;q11), t(X;7)(q22;q34), t(1;14)(p32;q11), ins(14;5)(q11;q?q?), inv(7)(p15q34), t(8;14)(q24;q11), t(7;11)(q34;p15), and t(12;14)(p13;q11). The clinical characteristics of this Nordic patient cohort agreed well with previous larger series, with a median age of 9.0 years, male predominance (male/female ratio 3.1), median white blood cell (WBC) count of 66.5 x 10(9)/l, and a high incidence of mediastinal mass and central nervous system involvement (59% and 9.5%, respectively). These features did not differ significantly among the various genetic subgroups. 5-year event-free survival (EFS) and overall survival for all patients were 0.61 (+/-0.03) and 0.67 (+/-0.03), respectively. In a multivariate analysis, two factors affected negatively the EFS, namely a WBC count of > or =200 x 10(9)/l (P < 0.001) and the presence of rare TCR rearrangements (P = 0.001). In conclusion, in this large series of childhood T-ALLs from the Nordic countries, the cytogenetic findings were not associated with risk of therapy failure with the exception of the TCR;other group. However, further prospective and collaborative investigations of this genetically heterogeneous entity are needed to confirm these results.
  •  
35.
  • Mustjoki, S, et al. (författare)
  • Impact of malignant stem cell burden on therapy outcome in newly diagnosed chronic myeloid leukemia patients
  • 2013
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 27:7, s. 1520-1526
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic myeloid leukemia (CML) stem cells appear resistant to tyrosine kinase inhibitors (TKIs) in vitro, but their impact and drug sensitivity in vivo has not been systematically assessed. We prospectively analyzed the proportion of Philadelphia chromosome-positive leukemic stem cells (LSCs, Ph+CD34+CD38=) and progenitor cells (LPCs, Ph+CD34+CD38+) from 46 newly diagnosed CML patients both at the diagnosis and during imatinib or dasatinib therapy (ClinicalTrials.gov NCT00852566). At diagnosis, the proportion of LSCs varied markedly (1-100%) between individual patients with a significantly lower median value as compared with LPCs (79% vs 96%, respectively, P = 0.0001). The LSC burden correlated with leukocyte count, spleen size, hemoglobin and blast percentage. A low initial LSC percentage was associated with less therapy-related hematological toxicity and superior cytogenetic and molecular responses. After initiation of TKI therapy, the LPCs and LSCs rapidly decreased in both therapy groups, but at 3 months time point the median LPC level was significantly lower in dasatinib group compared with imatinib patients (0.05% vs 0.68%, P = 0.032). These data detail for the first time the prognostic significance of the LSC burden at diagnosis and show that in contrast to in vitro data, TKI therapy rapidly eradicates the majority of LSCs in patients.
  •  
36.
  • Osorio, A., et al. (författare)
  • Evaluation of the XRCC1 gene as a phenotypic modifier in BRCA1/2 mutation carriers. Results from the consortium of investigators of modifiers of BRCA1/BRCA2
  • 2011
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 1532-1827 .- 0007-0920. ; 104:8, s. 1356-1361
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Single-nucleotide polymorphisms (SNPs) in genes involved in DNA repair are good candidates to be tested as phenotypic modifiers for carriers of mutations in the high-risk susceptibility genes BRCA1 and BRCA2. The base excision repair (BER) pathway could be particularly interesting given the relation of synthetic lethality that exists between one of the components of the pathway, PARP1, and both BRCA1 and BRCA2. In this study, we have evaluated the XRCC1 gene that participates in the BER pathway, as phenotypic modifier of BRCA1 and BRCA2. METHODS: Three common SNPs in the gene, c.-77C>T (rs3213245) p.Arg280His (rs25489) and p.Gln399Arg (rs25487) were analysed in a series of 701 BRCA1 and 576 BRCA2 mutation carriers. RESULTS: An association was observed between p.Arg280His-rs25489 and breast cancer risk for BRCA2 mutation carriers, with rare homozygotes at increased risk relative to common homozygotes (hazard ratio: 22.3, 95% confidence interval: 14.3-34, P<0.001). This association was further tested in a second series of 4480 BRCA1 and 3016 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2. CONCLUSIONS AND INTERPRETATION: No evidence of association was found when the larger series was analysed which lead us to conclude that none of the three SNPs are significant modifiers of breast cancer risk for mutation carriers. British Journal of Cancer (2011) 104, 1356-1361. doi:10.1038/bjc.2011.91 www.bjcancer.com Published online 22 March 2011 (C) 2011 Cancer Research UK
  •  
37.
  •  
38.
  • Staaf, Johan, et al. (författare)
  • Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study
  • 2019
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 25, s. 1526-1533
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing (WGS) brings comprehensive insights to cancer genome interpretation. To explore the clinical value of WGS, we sequenced 254 triple-negative breast cancers (TNBCs) for which associated treatment and outcome data were collected between 2010 and 2015 via the population-based Sweden Cancerome Analysis Network-Breast (SCAN-B) project (ClinicalTrials.gov ID:NCT02306096). Applying the HRDetect mutational-signature-based algorithm to classify tumors, 59% were predicted to have homologous-recombination-repair deficiency (HRDetect-high): 67% explained by germline/somatic mutations of BRCA1/BRCA2, BRCA1 promoter hypermethylation, RAD51C hypermethylation or biallelic loss of PALB2. A novel mechanism of BRCA1 abrogation was discovered via germline SINE-VNTR-Alu retrotransposition. HRDetect provided independent prognostic information, with HRDetect-high patients having better outcome on adjuvant chemotherapy for invasive disease-free survival (hazard ratio (HR) = 0.42; 95% confidence interval (CI) = 0.2-0.87) and distant relapse-free interval (HR = 0.31, CI = 0.13-0.76) compared to HRDetect-low, regardless of whether a genetic/epigenetic cause was identified. HRDetect-intermediate, some possessing potentially targetable biological abnormalities, had the poorest outcomes. HRDetect-low cancers also had inadequate outcomes: ~4.7% were mismatch-repair-deficient (another targetable defect, not typically sought) and they were enriched for (but not restricted to) PIK3CA/AKT1 pathway abnormalities. New treatment options need to be considered for now-discernible HRDetect-intermediate and HRDetect-low categories. This population-based study advocates for WGS of TNBC to better inform trial stratification and improve clinical decision-making.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-38 av 38
Typ av publikation
tidskriftsartikel (30)
konferensbidrag (6)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Ehrencrona, Hans (25)
Ehrencrona, H (15)
Nevanlinna, H (12)
Osorio, A. (12)
Benitez, J. (11)
Peterlongo, P (11)
visa fler...
Radice, P (11)
Chenevix-Trench, G (11)
McGuffog, L. (11)
Frost, D. (11)
Hamann, U (10)
Manoukian, S (10)
Simard, J (10)
Meindl, A (10)
Stoppa-Lyonnet, D. (10)
Davidson, R. (9)
Olah, E (9)
Loman, Niklas (9)
Peissel, B. (9)
Thomassen, M. (9)
Offit, K. (9)
Montagna, M. (9)
Engel, C. (9)
Arnold, N. (9)
Niederacher, D. (9)
Izatt, L. (9)
Nevanlinna, Heli (8)
Friedman, E. (8)
Andrulis, IL (8)
Easton, DF (8)
Chenevix-Trench, Geo ... (8)
Meindl, Alfons (8)
Offit, Kenneth (8)
Radice, Paolo (8)
Easton, Douglas F. (8)
Buys, SS (8)
Schmutzler, RK (8)
Singer, CF (8)
Goldgar, DE (8)
Antoniou, AC (8)
Antoniou, Antonis C. (8)
Domchek, Susan M. (8)
Laitman, Y. (8)
Rantala, J. (8)
Lazaro, C. (8)
Sutter, C. (8)
Caldes, T. (8)
De La Hoya, M. (8)
Bonanni, B. (8)
Brewer, C (8)
visa färre...
Lärosäte
Karolinska Institutet (30)
Lunds universitet (28)
Uppsala universitet (19)
Linköpings universitet (7)
Göteborgs universitet (5)
Umeå universitet (5)
visa fler...
Kungliga Tekniska Högskolan (2)
Jönköping University (2)
Örebro universitet (1)
visa färre...
Språk
Engelska (38)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (30)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy