SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ehsan Muhsan) "

Sökning: WFRF:(Ehsan Muhsan)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amjad, Muhammad Raiees, et al. (författare)
  • Carbonate Reservoir Quality Variations in Basins with a Variable Sediment Influx: A Case Study from the Balkassar Oil Field, Potwar, Pakistan
  • 2023
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 8:4, s. 4127-4145
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbonate reservoir quality is strongly reliant on the compaction process during sediment burial and other processes such as cementation and dissolution. Porosity and pore pressure are the two main factors directly affected by mechanical and chemical compactions. Porosity reduction in these carbonates is critically dependent on the overburden stress and subsidence rate. A variable sediment influx in younger basins may lead to changes in the reservoir quality in response to increasing lithostatic pressure. Deposition of molasse sediments as a result of the Himalayan orogeny caused variations in the sedimentation influx in the Potwar Basin of Pakistan throughout the Neogene times. The basic idea of this study is to analyze the carbonate reservoir quality variations induced by the compaction and variable sediment influx. The Sakesar Limestone of the Eocene age, one of the proven carbonate reservoirs in the Potwar Basin, shows significant changes in the reservoir quality, specifically in terms of porosity and pressure. A 3D seismic cube (10 km2) and three wells of the Balkassar field are used for this analysis. To determine the vertical and lateral changes of porosity in the Balkassar area, porosity is computed from both the log and seismic data. The results of both the data sets indicate 2–4% porosities in the Sakesar Limestone. The porosity reduction rate with respect to the lithostatic pressure computed with the help of geohistory analysis represents a sharp decrease in porosity values during the Miocene times. Pore pressure predictions in the Balkassar OXY 01 well indicate underpressure conditions in the Sakesar Limestone. The Eocene limestones deposited before the collision of the Indian plate had enough time for fluid expulsion and show underpressure conditions with high porosities. 
  •  
2.
  • Ehsan, Muhsan, et al. (författare)
  • An integrated study for seismic structural interpretation and reservoir estimation of Sawan gas field, Lower Indus Basin, Pakistan
  • 2023
  • Ingår i: Heliyon. - : Elsevier. - 2405-8440. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The information about the subsurface structure, type of fluids present in the reservoir, and physical properties of the rocks is essential for identifying potential leads. The integrated approach of petrophysical analysis, seismic data interpretation, seismic attributes analysis, lithology, mineralogy identification, and Gassmann fluid substitution were used for this purpose. The structural interpretation with the help of seismic data indicated the extensional regime with horst and graben structures in the study area. The two negative flower structures are cutting the entire Cretaceous deposits. The depth contour map also indicate favorable structures for hydrocarbon accumulation. The four possible reservoir zones in the Sawan-01 well and two zones in the Judge-01 well at B sand and C sand levels are identified based on well data interpretation. The main lithology of the Lower Goru Formation is sandstone with thin beds of shale. The clay types confirm the marine depositional environment for Lower Goru Formation. The water substitution in the reservoir at B sand and C sand levels indicated increased P-wave velocity and density. The water substitution affected the shear wave velocity varies slightly due to density changes. The cross plots of P-impedance versus Vp/Vs ratio differentiate the sandstone with low P-impedance and low Vp/Vs ratio from shaly sandstone with high values in the reservoir area. The P-impedance and S-impedance cross plot indicate increasing gas saturation with a decrease in impedance values. The low values of Lambda-Rho and Mu-Rho indicated the gas sandstone in the cross plot.
  •  
3.
  • Ehsan, Muhsan, et al. (författare)
  • Groundwater delineation for sustainable improvement and development aided by GIS, AHP, and MIF techniques
  • 2024
  • Ingår i: Applied water science. - : Springer Science and Business Media Deutschland GmbH. - 2190-5487 .- 2190-5495. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Exploration of groundwater is an integral part of viable resource growth for society, economy, and irrigation. However, uncontrolled utilization is mainly reported in urban and industries due to the increasing demand for water in semi-arid and arid regions of the world. In the background, groundwater demarcation for potential areas is vital in meeting necessary demand. The current study applied an integrated method comprising the analytical hierarchy process (AHP), multiple influence factors (MIF), combined with a linear regression curve and observatory well data for groundwater prospects mapping. Thematic maps such as flow direction, flow accumulation, elevation map, land use land cover, slope, soil texture, hill shade, geomorphology, normalized vegetation index, and groundwater depth map were generated utilizing remote sensing techniques. The relative weight of each parameter was estimated and then assigned to major and minor parameters. Potential zones for groundwater were classified into five classes, namely very good, good, moderate, poor, and very poor, based on AHP and MIF methods. A spatially explicit sensitivity and uncertainty analysis method to a GIS-based multi-criteria groundwater potential zone model is presented in this research. The study addressed a flaw in the way groundwater potential mapping results are typically presented in GIS-based multi-criteria decision analysis studies, where discrete class outputs are used without any assessment of their certainty with respect to variations in criteria weighting, which is one of the main contributors to output uncertainty. The study region is categorized based on inferred results as very poor, poor, marginal, and very good in potential ground quality 3.04 km2 is considered extremely poor, 3.33 km2 is considered poor, 64.42 km2 is considered very good, and 85.84 km2 is considered marginal zones, which shows reliable and potential implementation. The outcomes of AHP and MIF were validated by linear regression curve and actual water table in a study area. The study results help to formulate the potential demarcation of groundwater zones for future sustainable planning and development of groundwater sources. This study may be helpful to provide a cost-effective solution to water resources crises. The current study finding may be helpful for decision-makers and administrative professionals for sustainable management of groundwater resources for present and future demands.
  •  
4.
  • Khan, Mumtaz Ali, et al. (författare)
  • Health risks associated with radon concentrations in carbonate and evaporite sequences of the uranium-rich district Karak, Pakistan
  • 2022
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The present research was carried out to investigate the behavior of radon (222Rn) concentrations over the carbonate and evaporite sequences and to assess the related health hazards. A total of 50 points from three different stratigraphic units, namely, the Bahadurkhel Salt, Jatta Gypsum, and the Kohat Formation of the Eocene age, were analyzed for radon concentrations in the district of Karak, Khyber Pakhtunkhwa, Pakistan. Measurements for radon levels were made by using RAD7 of Durridge, United States. The highest average 222Rn concentration (16.5 Bq/L) was found in the limestone unit of the Kohat Formation of the Eocene age. However, the lowest radon levels were observed in the salt-bearing strata of the Bahadurkhel Salt of the Eocene age. The study revealed that the average radon concentration in all the lithologies varied in the order of RnLimestone > RnSalt > RnGypsum. The findings of the current research suggest that the study area is safe from radon-related health hazards.
  •  
5.
  • Sohail, Muhammad Tayyab, et al. (författare)
  • Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan
  • 2022
  • Ingår i: Applied water science. - : Springer. - 2190-5487 .- 2190-5495. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater depletion is an emerging problem worldwide due to changes in climate and an increase in urbanization. Two significant water-bearing formations, the Oligocene-aged Nari and the Miocene-aged Gaj, were utilized as a case study exposed near Karachi, Pakistan. Groundwater budgeting was performed through a classical equation. The inflow of groundwater in the formations was calculated by thermo-pluviometric data and water loss of Hub Dam. The potential of evapotranspiration (PET) was calculated by the Thornthwaite method. The groundwater inflow from Hub Dam was estimated by using 20 years of annual water loss data by removing PET. The total mean annual inflow of groundwater in the formations was 2414.12 US Gallons per Second (gps). The annual mean outflow was estimated by calculation of groundwater usage for industries and domestic purposes and the mean annual groundwater outflow was 5562.61 US gps and an annual deficit of groundwater was 3148.5 US gps. The research is composed of validating the groundwater budget. Direct Current Electrical Resistivity (DCER) and static water level data from existing industrial wells were used for groundwater maps. The DCER data indicates A-Type and K-Type sub-surface with high resistivity in the three-layer model. The average water table of residential areas in 2019 was 60 m and in industrial areas was 130 m. The oscillation of the groundwater table over the last 20 years and the deficit of the groundwater budget shows an alarming condition for the future. If the same scenario persists, then by 2025, the water table will decline up to 140 m.
  •  
6.
  • Sohail, Muhammad Tayyab, et al. (författare)
  • Impacts of urbanization, LULC, LST, and NDVI changes on the static water table with possible solutions and water policy discussions: A case from Islamabad, Pakistan
  • 2023
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid urbanization, coupled with land use land cover changes (LULC), has caused stress on freshwater resources around the globe. As in the case of Islamabad, the capital of Pakistan, the population has increased significantly, creating a deficit of natural resources and affecting the environment adversely. Therefore, the purpose of this study is to examine the effects of urbanization and LULC on the decline of the static water table in Islamabad. It also seeks to analyze water policy issues in order to achieve sustainable water resource development. The excessive pumping of the existing groundwater has exceeded the safe limit, which is justified by the constantly growing population. However, the changes in the LULC of the study area have turned many green pastures into barren land. Our research data were obtained from the Capital Development Authority (CDA), Pakistan Meteorological Department (PMD), and Landsat Satellite images. After analyzing PMD and CDA data for the last 20 years (2000–2020), the results were interpreted using Arc GIS. It has been observed that the Normalized Difference Vegetation Index (NDVI) value increases as the Land Surface Temperature (LST) decreases. Therefore, the overall observation is a decreasing trend in Islamabad temperatures due to the increased vegetation in the study area during the period of 2000–2020. It was observed that there has been a considerable drop in water levels due to over-pumping in a few areas. It is primarily associated with the increasing population of the capital in the last 2 decades. This study uses a survey to explore the potential locations for check dams to enhance and recharge the groundwater aquifers in the capital, Islamabad. It suggests catchment areas throughout the Margalla Hills along with different localities, such as Rumli Village, Trail 5, and Shahdara.
  •  
7.
  • Tounkara, Fode, et al. (författare)
  • Analyzing the seismic attributes, structural and petrophysical analyses of the Lower Goru Formation: A case study from Middle Indus Basin Pakistan
  • 2023
  • Ingår i: Frontiers in Earth Science. - : Frontiers Media S.A.. - 2296-6463. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this research is to delineate the structures of the Lower Goru Formation, investigate fluid properties, and clarify the hydrocarbon-prone areas through seismic attributes analysis. First, the acquired data was matched by the interpretation datum. Structural analysis was done by performing horizon interpretation, fault interpretation, and contour mapping on the C-Interval of the Lower Goru Formation. Hydrocarbon zones were marked with the help of attribute analysis on seismic sections and were justified by petrophysical analysis. An integrated approach such as seismic structural interpretation, seismic attribute, spectral decomposition, and petrophysical analyses was used in current research to better understand geological structure and features. This research showed that normal faults are present in the area showing negative flower structure, horst and graben, and faults oriented north-west to south-east. The contour map shows structural inclination and faults bound closure near well locations. Variance attribute and spectral decomposition attribute were used to verify horizon lineation and fault behavior. Instantaneous amplitude and instantaneous phase attributes justify hydrocarbon bearing zones, and bright spots are present on seismic sections at C–Interval of Lower Goru Formation. Petrophysical analysis of the available wells showed a number of significant hydrocarbon zones having more than 55% of hydrocarbon saturation at the C-Interval of the Lower Goru Formation. The four possible reservoir zones in Sawan-02 well, two zones in Sawan-07 well, and three zones in Sawan-09 well are identified based on well data interpretation. Based on these analyses, the area of interest has a very good reservoir potential, structural closure, and visible bright spots. The current finding of this research will be helpful for future exploration and development of the Sawan area.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy