SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eisenmenger Laura) "

Sökning: WFRF:(Eisenmenger Laura)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Du, Lianlian, et al. (författare)
  • Harnessing cognitive trajectory clusterings to examine subclinical decline risk factors
  • 2023
  • Ingår i: Brain Communications. - 2632-1297. ; 5:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitive decline in Alzheimer's disease and other dementias typically begins long before clinical impairment. Identifying people experiencing subclinical decline may facilitate earlier intervention. This study developed cognitive trajectory clusters using longitudinally based random slope and change point parameter estimates from a Preclinical Alzheimer's disease Cognitive Composite and examined how baseline and most recently available clinical/health-related characteristics, cognitive statuses and biomarkers for Alzheimer's disease and vascular disease varied across these cognitive clusters. Data were drawn from the Wisconsin Registry for Alzheimer's Prevention, a longitudinal cohort study of adults from late midlife, enriched for a parental history of Alzheimer's disease and without dementia at baseline. Participants who were cognitively unimpaired at the baseline visit with ≥3 cognitive visits were included in trajectory modelling (n = 1068). The following biomarker data were available for subsets: positron emission tomography amyloid (amyloid: n = 367; [11C]Pittsburgh compound B (PiB): global PiB distribution volume ratio); positron emission tomography tau (tau: n = 321; [18F]MK-6240: primary regions of interest meta-temporal composite); MRI neurodegeneration (neurodegeneration: n = 581; hippocampal volume and global brain atrophy); T2 fluid-attenuated inversion recovery MRI white matter ischaemic lesion volumes (vascular: white matter hyperintensities; n = 419); and plasma pTau217 (n = 165). Posterior median estimate person-level change points, slopes' pre- and post-change point and estimated outcome (intercepts) at change point for cognitive composite were extracted from Bayesian Bent-Line Regression modelling and used to characterize cognitive trajectory groups (K-means clustering). A common method was used to identify amyloid/tau/neurodegeneration/vascular biomarker thresholds. We compared demographics, last visit cognitive status, health-related factors and amyloid/tau/neurodegeneration/vascular biomarkers across the cognitive groups using ANOVA, Kruskal-Wallis, χ2, and Fisher's exact tests. Mean (standard deviation) baseline and last cognitive assessment ages were 58.4 (6.4) and 66.6 (6.6) years, respectively. Cluster analysis identified three cognitive trajectory groups representing steep, n = 77 (7.2%); intermediate, n = 446 (41.8%); and minimal, n = 545 (51.0%) cognitive decline. The steep decline group was older, had more females, APOE e4 carriers and mild cognitive impairment/dementia at last visit; it also showed worse self-reported general health-related and vascular risk factors and higher amyloid, tau, neurodegeneration and white matter hyperintensity positive proportions at last visit. Subtle cognitive decline was consistently evident in the steep decline group and was associated with generally worse health. In addition, cognitive trajectory groups differed on aetiology-informative biomarkers and risk factors, suggesting an intimate link between preclinical cognitive patterns and amyloid/tau/neurodegeneration/vascular biomarker differences in late middle-aged adults. The result explains some of the heterogeneity in cognitive performance within cognitively unimpaired late middle-aged adults.
  •  
2.
  • Rivera-Rivera, Leonardo A., et al. (författare)
  • Four-dimensional flow MRI for quantitative assessment of cerebrospinal fluid dynamics : Status and opportunities
  • 2024
  • Ingår i: NMR in Biomedicine. - : John Wiley & Sons. - 0952-3480 .- 1099-1492. ; 37:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurological disorders can manifest with altered neurofluid dynamics in different compartments of the central nervous system. These include alterations in cerebral blood flow, cerebrospinal fluid (CSF) flow, and tissue biomechanics. Noninvasive quantitative assessment of neurofluid flow and tissue motion is feasible with phase contrast magnetic resonance imaging (PC MRI). While two-dimensional (2D) PC MRI is routinely utilized in research and clinical settings to assess flow dynamics through a single imaging slice, comprehensive neurofluid dynamic assessment can be limited or impractical. Recently, four-dimensional (4D) flow MRI (or time-resolved three-dimensional PC with three-directional velocity encoding) has emerged as a powerful extension of 2D PC, allowing for large volumetric coverage of fluid velocities at high spatiotemporal resolution within clinically reasonable scan times. Yet, most 4D flow studies have focused on blood flow imaging. Characterizing CSF flow dynamics with 4D flow (i.e., 4D CSF flow) is of high interest to understand normal brain and spine physiology, but also to study neurological disorders such as dysfunctional brain metabolite waste clearance, where CSF dynamics appear to play an important role. However, 4D CSF flow imaging is challenged by the long T1 time of CSF and slower velocities compared with blood flow, which can result in longer scan times from low flip angles and extended motion-sensitive gradients, hindering clinical adoption. In this work, we review the state of 4D CSF flow MRI including challenges, novel solutions from current research and ongoing needs, examples of clinical and research applications, and discuss an outlook on the future of 4D CSF flow.
  •  
3.
  • Taylor, Jennifer, et al. (författare)
  • Perioperative ischaemic brain injury and plasma neurofilament light: a secondary analysis of two prospective cohort studies.
  • 2022
  • Ingår i: British journal of anaesthesia. - : Elsevier BV. - 1471-6771 .- 0007-0912. ; 130:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischaemic brain infarction can occur without acute neurological symptoms (covert strokes) or with symptoms (overt strokes), both associated with poor health outcomes. We conducted a pilot study of the incidence of preoperative and postoperative (intraoperative or postoperative) covert strokes, and explored the relationship of postoperative ischaemic brain injury to blood levels of neurofilament light, a biomarker of neuronal damage.We analysed 101 preoperative (within 2 weeks of surgery) and 58 postoperative research MRIs on postoperative days 2-9 from two prospective cohorts collected at the University of Wisconsin (NCT01980511 and NCT03124303). Participants were aged >65 yr and undergoing non-intracranial, non-carotid surgery.Preoperative covert stroke was identified in 2/101 participants (2%; Bayesian 95% confidence interval [CI], 0.2-5.4). This rate was statistically different from the postoperative ischaemic brain injury rate of 7/58 (12%, 4.9-21.3%; P=0.01) based on postoperative imaging. However, in a smaller group of participants with paired imaging (n=30), we did not identify the same effect (P=0.67). Patients with postoperative brain injury had elevated peak neurofilament light levels (median [inter-quartile range], 2.34 [2.24-2.64] log10 pg ml-1) compared with those without (1.86 [1.48-2.21] log10 pg ml-1; P=0.025). Delirium severity scores were higher in those with postoperative brain injury (19 [17-21]) compared with those without (7 [4-12]; P=0.01).Although limited by a small sample size, these data suggest that preoperative covert stroke occurs more commonly than previously anticipated. Plasma neurofilament light is a potential screening biomarker for postoperative ischaemic brain injury.
  •  
4.
  • Wang, Rui, et al. (författare)
  • Impact of sex and APOE ε4 on age-related cerebral perfusion trajectories in cognitively asymptomatic middle-aged and older adults : A longitudinal study.
  • 2021
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : Sage Publications. - 0271-678X .- 1559-7016. ; 41:11, s. 3016-3027
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral hypoperfusion is thought to contribute to cognitive decline in Alzheimer's disease, but the natural trajectory of cerebral perfusion in cognitively healthy adults has not been well-studied. This longitudinal study is consisted of 950 participants (40-89 years), who were cognitively unimpaired at their first visit. We investigated the age-related changes in cerebral perfusion, and their associations with APOE-genotype, biological sex, and cardiometabolic measurements. During the follow-up period (range 0.13-8.24 years), increasing age was significantly associated with decreasing cerebral perfusion, in total gray-matter (β=-1.43), hippocampus (-1.25), superior frontal gyrus (-1.70), middle frontal gyrus (-1.99), posterior cingulate (-2.46), and precuneus (-2.14), with all P-values < 0.01. Compared with male-ɛ4 carriers, female-ɛ4 carriers showed a faster decline in global and regional cerebral perfusion with increasing age, whereas the age-related decline in cerebral perfusion was similar between male- and female-ɛ4 non-carriers. Worse cardiometabolic profile (i.e., increased blood pressure, body mass index, total cholesterol, and blood glucose) was associated with lower cerebral perfusion at all the visits. When time-varying cardiometabolic measurements were adjusted in the model, the synergistic effect of sex and APOE-ɛ4 on age-related cerebral perfusion-trajectories became largely attenuated. Our findings demonstrate that APOE-genotype and sex interactively impact cerebral perfusion-trajectories in mid- to late-life. This effect may be partially explained by cardiometabolic alterations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy