SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ellonen Pekka) "

Sökning: WFRF:(Ellonen Pekka)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Götz, Alexandra, et al. (författare)
  • Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Cell Press. - 0002-9297 .- 1537-6605. ; 88:5, s. 635-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure.
  •  
2.
  • Kelkka, Tiina, et al. (författare)
  • Adult-Onset Anti-Citrullinated Peptide Antibody-Negative Destructive Rheumatoid Arthritis Is Characterized by a Disease-Specific CD8+T Lymphocyte Signature
  • 2020
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Rheumatoid arthritis (RA) is a complex autoimmune disease targeting synovial joints. Traditionally, RA is divided into seropositive (SP) and seronegative (SN) disease forms, the latter consisting of an array of unrelated diseases with joint involvement. Recently, we described a severe form of SN-RA that associates with characteristic joint destruction. Here, we sought biological characteristics to differentiate this rare but aggressive anti-citrullinated peptide antibody-negative destructive RA (CND-RA) from early seropositive (SP-RA) and seronegative rheumatoid arthritis (SN-RA). We also aimed to study cytotoxic CD8+ lymphocytes in autoimmune arthritis. CND-RA, SP-RA and SN-RA were compared to healthy controls to reveal differences in T-cell receptor beta (TCR beta) repertoire, cytokine levels and autoantibody repertoires. Whole-exome sequencing (WES) followed by single-cell RNA-sequencing (sc-RNA-seq) was performed to study somatic mutations in a clonally expanded CD8+ lymphocyte population in an index patient. A unique TCR beta signature was detected in CND-RA patients. In addition, CND-RA patients expressed higher levels of the bone destruction-associated TNFSF14 cytokine. Blood IgG repertoire from CND-RA patients recognized fewer endogenous proteins than SP-RA patients repertoires. Using WES, we detected a stable mutation profile in the clonally expanded CD8+ T-cell population characterized by cytotoxic gene expression signature discovered by sc-RNA-sequencing. Our results identify CND-RA as an independent RA subset and reveal a CND-RA specific TCR signature in the CD8+ lymphocytes. Improved classification of seronegative RA patients underlines the heterogeneity of RA and also, facilitates development of improved therapeutic options for the treatment resistant patients.
  •  
3.
  •  
4.
  • Lahermo, P, et al. (författare)
  • A quality assessment survey of SNP genotyping laboratories
  • 2006
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 27:7, s. 711-714
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • To survey the quality of SNP genotyping, a joint Nordic quality assessment (QA) round was organized between 11 laboratories in the Nordic and Baltic countries. The QA round involved blinded genotyping of 47 DNA samples for 18 or six randomly selected SNPs. The methods used by the participating laboratories included all major platforms for small- to medium-size SNP genotyping. The laboratories used their standard procedures for SNP assay design, genotyping, and quality control. Based on the joint results from all laboratories, a consensus genotype for each DNA sample and SNP was determined by the coordinator of the survey, and the results from each laboratory were compared to this genotype. The overall genotyping accuracy achieved in the survey was excellent. Six laboratories delivered genotype data that were in full agreement with the consensus genotype. The average accuracy per SNP varied from 99.1 to 100% between the laboratories, and it was frequently 100% for the majority of the assays for which SNP genotypes were reported. Lessons from the survey are that special attention should be given to the quality of the DNA samples prior to genotyping, and that a conservative approach for calling the genotypes should be used to achieve a high accuracy.
  •  
5.
  • Pietiläinen, Kirsi H., et al. (författare)
  • Global transcript profiles of fat in monozygotic twins discordant for BMI : pathways behind acquired obesity
  • 2008
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The acquired component of complex traits is difficult to dissect in humans. Obesity represents such a trait, in which the metabolic and molecular consequences emerge from complex interactions of genes and environment. With the substantial morbidity associated with obesity, a deeper understanding of the concurrent metabolic changes is of considerable importance. The goal of this study was to investigate this important acquired component and expose obesity-induced changes in biological pathways in an identical genetic background.METHODS AND FINDINGS: We used a special study design of "clonal controls," rare monozygotic twins discordant for obesity identified through a national registry of 2,453 young, healthy twin pairs. A total of 14 pairs were studied (eight male, six female; white), with a mean +/- standard deviation (SD) age 25.8 +/- 1.4 y and a body mass index (BMI) difference 5.2 +/- 1.8 kg/m(2). Sequence analyses of mitochondrial DNA (mtDNA) in subcutaneous fat and peripheral leukocytes revealed no aberrant heteroplasmy between the co-twins. However, mtDNA copy number was reduced by 47% in the obese co-twin's fat. In addition, novel pathway analyses of the adipose tissue transcription profiles exposed significant down-regulation of mitochondrial branched-chain amino acid (BCAA) catabolism (p < 0.0001). In line with this finding, serum levels of insulin secretion-enhancing BCAAs were increased in obese male co-twins (9% increase, p = 0.025). Lending clinical relevance to the findings, in both sexes the observed aberrations in mitochondrial amino acid metabolism pathways in fat correlated closely with liver fat accumulation, insulin resistance, and hyperinsulinemia, early aberrations of acquired obesity in these healthy young adults.CONCLUSIONS: Our findings emphasize a substantial role of mitochondrial energy- and amino acid metabolism in obesity and development of insulin resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (5)
Typ av innehåll
refereegranskat (3)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Ellonen, Pekka (5)
Sjöwall, Christopher (2)
Orešič, Matej, 1967- (2)
Suomalainen, Anu (2)
Elo, Laura L. (2)
Mustjoki, Satu (2)
visa fler...
Khan, Sofia (2)
Sokka-Isler, Tuulikk ... (2)
Kelkka, Tiina (2)
Götz, Alexandra (2)
Leirisalo-Repo, Marj ... (2)
Huuhtanen, Jani (2)
Yadav, Bhagwan (2)
Kere, Juha (1)
Axelsson, Tomas (1)
Yki-Järvinen, Hannel ... (1)
Syvänen, Ann-Christi ... (1)
Odeberg, Jacob (1)
Groop, Per Henrik (1)
Hyötyläinen, Tuulia, ... (1)
Tyynismaa, Henna (1)
Holmberg, Dan (1)
Rissanen, Aila (1)
Kaprio, Jaakko (1)
Sterner, Maria (1)
Peltonen, Leena (1)
Halldén, Christer (1)
Liljedahl, Ulrika (1)
Holmberg, Kristina (1)
Lindgren, Cecilia (1)
Osterman, Pia (1)
Paetau, Anders (1)
Hämäläinen, Riikka H (1)
Pietiläinen, Kirsi H (1)
Lahermo, P (1)
Saharinen, Juha (1)
Lähdesmäki, Harri (1)
Palotie, Aarno (1)
Tommiska, Johanna (1)
Saarela, Janna (1)
Kiviluoma, P (1)
Kristensen, Vessela (1)
Brookes, Anthony J. (1)
Euro, Liliya (1)
Ojala, Tiina (1)
Raivio, Taneli (1)
Karikoski, Riitta (1)
Tammela, Outi (1)
Simola, Kalle O J (1)
Tyni, Tiina (1)
visa färre...
Lärosäte
Örebro universitet (2)
Linköpings universitet (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Lunds universitet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy