SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Emmett B) "

Sökning: WFRF:(Emmett B)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Carter, M. S., et al. (författare)
  • Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands - responses to climatic and environmental changes
  • 2012
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 9:10, s. 3739-3755
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we compare annual fluxes of methane (CH4), nitrous oxide (N2O) and soil respiratory carbon dioxide (CO2) measured at nine European peatlands (n = 4) and shrublands (n = 5). The sites range from northern Sweden to Spain, covering a span in mean annual air temperature from 0 to 16 degrees C, and in annual precipitation from 300 to 1300 mm yr(-1). The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (> 30 yr) effect of drainage was assessed, while increased nitrogen deposition was investigated at three peatland sites. The shrublands were generally sinks for atmospheric CH4, whereas the peatlands were CH4 sources, with fluxes ranging from -519 to + 6890 mg CH4-Cm-2 yr(-1) across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from -14 to 42 mg N2O-Nm(-2) yr(-1). Highest N2O emission occurred at the sites that had highest nitrate (NO3-) concentration in the soil water. Furthermore, experimentally increased NO3- deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 g CO2-C m(-2) yr(-1). Drought and long-term drainage from -519 to + 6890 mg CH4-C m(-2) yr(-1) across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from -14 to 42 mg N2O-N m(-2) yr(-1). Highest N2O emission occurred at the sites that had highest nitrate (NO3-) concentration in the soil water. Furthermore, experimentally increased NO3- deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 g CO2-Cm-2 yr(-1). Drought and long-term drainage generally reduced the soil CO2 efflux, except at a hydric shrubland where drought tended to increase soil respiration. In terms of fractional importance of each greenhouse gas to the total numerical global warming response, the change in CO2 efflux dominated the response in all treatments (ranging 71-96%), except for NO3- addition where 89% was due to change in CH4 emissions. Thus, in European peatlands and shrublands the effect on global warming induced by the investigated anthropogenic disturbances will be dominated by variations in soil CO2 fluxes.
  •  
3.
  •  
4.
  • Andresen, Louise C., 1974, et al. (författare)
  • Shifting Impacts of Climate Change: Long-Term Patterns of Plant Response to Elevated CO2, Drought, and Warming Across Ecosystems
  • 2016
  • Ingår i: Large-Scale Ecology: Model Systems to Global Perspectives. - : Elsevier. - 9780081009352 ; , s. 437-473
  • Bokkapitel (refereegranskat)abstract
    • Field experiments that expose terrestrial ecosystems to climate change factors by manipulations are expensive to maintain, and typically only last a few years. Plant biomass is commonly used to assess responses to climate treatments and to predict climate change impacts. However, response to the treatments might be considerably different between the early years and a decade later. The aim of this data analysis was to develop and apply a method for evaluating changes in plant biomass responses through time, in order to provide a firm basis for discussing how the ‘short-term’ response might differ from the ‘long-term’ response. Across 22 sites situated in the northern hemisphere, which covered three continents, and multiple ecosystems (grasslands, shrublands, moorlands, forests, and deserts), we evaluated biomass datasets from long-term experiments with exposure to elevated CO2 (eCO2), warming, or drought. We developed methods for assessing biomass response patterns to the manipulations using polynomial and linear (piecewise) model analysis and linked the responses to sitespecific variables such as temperature and rainfall. Polynomial patterns across sites indicated changes in response direction over time under eCO2, warming, and drought. In addition, five distinct pattern types were confirmed within sites: ‘no response’, ‘delayed response’, ‘directional response’, ‘dampening response’, and ‘altered response’ patterns. We found that biomass response direction was as likely to change over time as it was to be consistent, and therefore suggest that climate manipulation experiments should be carried out over timescales covering both short- and long-term responses, in order to realistically assess future impacts of climate change.
  •  
5.
  • Berg, Björn, et al. (författare)
  • Factors influencing limit values for pine needle litter decomposition : A synthesis for boreal and temperate pine forest systems
  • 2010
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 100:1, s. 57-73
  • Tidskriftsartikel (refereegranskat)abstract
    • We synthesized available data for decomposition of pine (Pinus) needle litter in pine forests to determine the litter chemical characteristics and climate factors that explained variation in the limit value, i. e. the level of accumulated mass loss at which the decomposition process either continues at a very low rate or possibly stops. Our data base included 56 separate studies on decomposition of pine needle litter, spanning Scots pine, lodgepole pine, Aleppo pine, stone pine and white pine, mainly incubated at the site of collection. Studies had 5 to 19 samplings, on average 10, and the decomposition was followed to a mass loss ranging from 47 to 83%, on average 67%. The periods from 3.0 to 5.4 years, on average 3.9 years, were of sufficient duration to allow estimates of limit values of decomposition. We used a linear mixed model with regression effects to relate limit values to potential explanatory variables, namely the sites' long-term mean annual temperature (MAT) and mean annual precipitation (MAP) and to substrate-chemistry factors. Regarding the latter, we explored two models; one that included initial concentrations of water solubles, lignin, N, P, K, Ca, Mg, and Mn and one that included only lignin, N, Ca, and Mn to focus on those nutrients known to influence lignin degradation. Using backward elimination significant explanatory variables were determined. For litter decomposed in its site of origin we found the limit value to depend mainly on the initial concentration of Mn, with higher Mn concentrations resulting in higher accumulated mass loss. Thus, litter with higher Mn reached a higher limit value and left a smaller stable fraction. This is likely due to the fact that Mn is an essential component of ligninolytic enzymes important for degrading litter in the later stages of decomposition. Manganese has received little attention in decomposition studies to date. Given its significance in this synthesis, the role of Mn in influencing variation in the late stages of decomposition among ecosystems and among litters of other genera besides Pinus deserves further attention.
  •  
6.
  • Byrnes, J. E. K., et al. (författare)
  • Investigating the relationship between biodiversity and ecosystem multifunctionality: Challenges and solutions
  • 2014
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 5:2, s. 111-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: Extensive research shows that more species-rich assemblages are generally more productive and efficient in resource use than comparable assemblages with fewer species. But the question of how diversity simultaneously affects the wide variety of ecological functions that ecosystems perform remains relatively understudied. It presents several analytical and empirical challenges that remain unresolved. In particular, researchers have developed several disparate metrics to quantify multifunctionality, each characterizing different aspects of the concept and each with pros and cons. We compare four approaches to characterizing multifunctionality and its dependence on biodiversity, quantifying (i) magnitudes of multiple individual functions separately, (ii) the extent to which different species promote different functions, (iii) the average level of a suite of functions and (iv) the number of functions that simultaneously exceeds a critical threshold. We illustrate each approach using data from the pan-European BIODEPTH experiment and the R multifunc package developed for this purpose, evaluate the strengths and weaknesses of each approach and implement several methodological improvements. We conclude that an extension of the fourth approach that systematically explores all possible threshold values provides the most comprehensive description of multifunctionality to date. We outline this method and recommend its use in future research. © 2013 British Ecological Society.
  •  
7.
  • Sheppard, L J, et al. (författare)
  • Do nitrogen additions change the sensitivity of detached shoots from Sitka and Norway spruce to freezing temperatures? Evidence from three field manipulation studies
  • 2003
  • Ingår i: Scandinavian Journal of Forest Research. - : Informa UK Limited. - 0282-7581 .- 1651-1891. ; 18:6, s. 487-498
  • Tidskriftsartikel (refereegranskat)abstract
    • Controversy surrounds the impact of atmospheric nitrogen (N) deposition on frost hardiness. There are no specific field studies and the relevance of data from N fertilizer studies is questionable. Field N manipulation experiments with Norway spruce [Picea abies . (L) Karst.] at Skogaby, Sweden, and Sitka spruce [P. sitchensis . (Bong.) Carr.] at Aber in Wales and Deepsyke in Scotland were sampled in November/December to assess hardiness. The N was supplied with different accompanying ions, from 35 to 100 kg N ha(-1) yr(-1), as solid fertilizer, in irrigation water or to the canopy. Detached shoots were experimentally frozen and damage was assessed from electrolyte leakage. Frost hardiness was not significantly affected by the N treatments irrespective of site, dose, species or length of treatment. Shoots that had received N were generally the most hardy. The results are consistent with the nutritional status of the foliage at the time of sampling.
  •  
8.
  •  
9.
  • Yu, Lei, et al. (författare)
  • Ocean current patterns drive the worldwide colonization of eelgrass (Zostera marina)
  • 2023
  • Ingår i: Nature Plants. - 2055-026X .- 2055-0278. ; 9:8, s. 1207-1220
  • Tidskriftsartikel (refereegranskat)abstract
    • Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243ky (thousand years). Mediterranean populations were founded ~44kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy