SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Engel Robin Y.) "

Sökning: WFRF:(Engel Robin Y.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Engel, Robin Y., et al. (författare)
  • Electron population dynamics in resonant non-linear x-ray absorption in nickel at a free-electron laser
  • 2023
  • Ingår i: Structural Dynamics. - : American Institute of Physics (AIP). - 2329-7778. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L-3-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm(2). We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale.
  •  
3.
  • Engel, Robin Y., et al. (författare)
  • Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
  • 2020
  • Ingår i: Applied Sciences. - : MDPI. - 2076-3417. ; 10:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Featured Application Exploiting the full flux and temporal resolution of SASE-FELs for highly sensitive X-ray absorption measurements. X-ray absorption spectroscopy (XAS) and the directly linked X-ray reflectivity near absorption edges yield a wealth of specific information on the electronic structure around the resonantly addressed element. Observing the dynamic response of complex materials to optical excitations in pump-probe experiments requires high sensitivity to small changes in the spectra which in turn necessitates the brilliance of free electron laser (FEL) pulses. However, due to the fluctuating spectral content of pulses generated by self-amplified spontaneous emission (SASE), FEL experiments often struggle to reach the full sensitivity and time-resolution that FELs can in principle enable. Here, we implement a setup which solves two common challenges in this type of spectroscopy using FELs: First, we achieve a high spectral resolution by using a spectrometer downstream of the sample instead of a monochromator upstream of the sample. Thus, the full FEL bandwidth contributes to the measurement at the same time, and the FEL pulse duration is not elongated by a monochromator. Second, the FEL beam is divided into identical copies by a transmission grating beam splitter so that two spectra from separate spots on the sample (or from the sample and known reference) can be recorded in-parallel with the same spectrometer, enabling a spectrally resolved intensity normalization of pulse fluctuations in pump-probe scenarios. We analyze the capabilities of this setup around the oxygen K- and nickel L-edges recorded with third harmonic radiation of the free electron laser in Hamburg (FLASH), demonstrating the capability for pump-probe measurements with sensitivity to reflectivity changes on the per mill level.
  •  
4.
  • Higley, Daniel J., et al. (författare)
  • Stimulated resonant inelastic X-ray scattering in a solid
  • 2022
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • When materials are exposed to X-ray pulses with sufficiently high intensity, various nonlinear effects can occur. The most fundamental one consists of stimulated electronic decays after resonant absorption of X-rays. Such stimulated decays enhance the number of emitted photons and the emission direction is confined to that of the stimulating incident photons which clone themselves in the process. Here we report the observation of stimulated resonant elastic (REXS) and inelastic (RIXS) X-ray scattering near the cobalt L3 edge in solid Co/Pd multilayer samples. We observe an enhancement of order 106 of the stimulated over the conventional spontaneous RIXS signal into the small acceptance angle of the RIXS spectrometer. We also find that in solids both stimulated REXS and RIXS spectra contain contributions from inelastic electron scattering processes, even for ultrashort 5 fs pulses. Our results reveal the potential and caveats of the development of stimulated RIXS in condensed matter.
  •  
5.
  • Thielemann-Kühn, Nele, et al. (författare)
  • Optical control of 4f orbital state in rare-earth metals
  • 2024
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 10:16
  • Tidskriftsartikel (refereegranskat)abstract
    • A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafast spin physics. With time-resolved x-ray absorption and resonant inelastic scattering experiments, we show for Tb metal that 4f-electronic excitations out of the ground-state multiplet occur after optical pumping. These excitations are driven by inelastic 5d-4f-electron scattering, altering the 4f-orbital state and consequently the MCA with important implications for magnetization dynamics in 4f-metals and more general for the excitation of localized electronic states in correlated materials.
  •  
6.
  • Wang, Xiaocui, et al. (författare)
  • Ultrafast manipulation of the NiO antiferromagnetic order via sub-gap optical excitation
  • 2022
  • Ingår i: Faraday discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 237:0, s. 300-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Wide-band-gap insulators such as NiO offer the exciting prospect of coherently manipulating electronic correlations with strong optical fields. Contrary to metals where rapid dephasing of optical excitation via electronic processes occurs, the sub-gap excitation in charge-transfer insulators has been shown to couple to low-energy bosonic excitations. However, it is currently unknown if the bosonic dressing field is composed of phonons or magnons. Here we use the prototypical charge-transfer insulator NiO to demonstrate that 1.5 eV sub-gap optical excitation leads to a renormalised NiO band-gap in combination with a significant reduction of the antiferromagnetic order. We employ element-specific X-ray reflectivity at the FLASH free-electron laser to demonstrate the reduction of the upper band-edge at the O 1s-2p core-valence resonance (K-edge) whereas the antiferromagnetic order is probed via X-ray magnetic linear dichroism (XMLD) at the Ni 2p-3d resonance (L-2-edge). Comparing the transient XMLD spectral line shape to ground-state measurements allows us to extract a spin temperature rise of 65 +/- 5 K for time delays longer than 400 fs while at earlier times a non-equilibrium spin state is formed. We identify transient mid-gap states being formed during the first 200 fs accompanied by a band-gap reduction lasting at least up to the maximum measured time delay of 2.4 ps. Electronic structure calculations indicate that magnon excitations significantly contribute to the reduction of the NiO band gap.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy