SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Enke Harry) "

Sökning: WFRF:(Enke Harry)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Leeuwen, F., et al. (författare)
  • Gaia Data Release 1 : Open cluster astrometry: Performance, limitations, and future prospects
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs.
  •  
2.
  • de Jong, Roelof S., et al. (författare)
  • 4MOST-4-metre Multi-Object Spectroscopic Telescope
  • 2014
  • Ingår i: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 0277-786X .- 1996-756X. ; 9147
  • Konferensbidrag (refereegranskat)abstract
    • 4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with similar to 2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; similar to 1600 fibres go to two spectrographs with resolution R> 5000 (lambda similar to 390-930 nm) and similar to 800 fibres to a spectrograph with R> 18,000 (lambda similar to 392-437 nm & 515-572 nm & 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].
  •  
3.
  • Kunder, Andrea, et al. (författare)
  • THE RADIAL VELOCITY EXPERIMENT (RAVE) : FIFTH DATA RELEASE
  • 2017
  • Ingår i: The Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9 < I < 12) survey of stars randomly selected in the Southern Hemisphere. The RAVE medium-resolution spectra (R ∼ 7500) covering the Ca-triplet region (8410-8795 A) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520,781 spectra of 457,588 unique stars are presented, of which 255,922 stellar observations have parallaxes and proper motions from the Tycho-Gaia astrometric solution in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, and overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from high-resolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalog of red giant stars in the dereddened color - (J Ks) 0 interval (0.50, 0.85) for which the gravities were calibrated based only on seismology. Further data products for subsamples of the RAVE stars include individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni, and distances found using isochrones. Each RAVE spectrum is complemented by an error spectrum, which has been used to determine uncertainties on the parameters. The data can be accessed via the RAVE Web site or the VizieR database.
  •  
4.
  • Steinmetz, Matthias, et al. (författare)
  • The Sixth Data Release of the Radial Velocity Experiment (RAVE). I. Survey Description, Spectra, and Radial Velocities
  • 2020
  • Ingår i: The Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radial Velocity Experiment (Rave) is a magnitude-limited (9 < I < 12) spectroscopic survey of Galactic stars randomly selected in Earth's southern hemisphere. The Rave medium-resolution spectra (R ∼ 7500) cover the Ca-triplet region (8410-8795 Å). The sixth and final data release (DR6) is based on 518,387 observations of 451,783 unique stars. Rave observations were taken between 2003 April 12 and 2013 April 4. Here we present the genesis, setup, and data reduction of Rave as well as wavelength-calibrated and flux-normalized spectra and error spectra for all observations in Rave DR6. Furthermore, we present derived spectral classification and radial velocities for the Rave targets, complemented by cross-matches with Gaia DR2 and other relevant catalogs. A comparison between internal error estimates, variances derived from stars with more than one observing epoch, and a comparison with radial velocities of Gaia DR2 reveals consistently that 68% of the objects have a velocity accuracy better than 1.4 km s-1, while 95% of the objects have radial velocities better than 4.0 km s-1. Stellar atmospheric parameters, abundances and distances are presented in a subsequent publication. The data can be accessed via the Rave website (http://rave-survey.org) or the Vizier database.
  •  
5.
  • Steinmetz, Matthias, et al. (författare)
  • The Sixth Data Release of the Radial Velocity Experiment (RAVE). II. Stellar Atmospheric Parameters, Chemical Abundances, and Distances
  • 2020
  • Ingår i: The Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present part 2 of the sixth and final Data Release (DR6) of the Radial Velocity Experiment (RAVE), a magnitude-limited (9 < I < 12) spectroscopic survey of Galactic stars randomly selected in Earth's southern hemisphere. The RAVE medium-resolution spectra (R ∼ 7500) cover the Ca triplet region (8410-8795 Å) and span the complete time frame from the start of RAVE observations on 2003 April 12 to their completion on 2013 April 4. In the second of two publications, we present the data products derived from 518,387 observations of 451,783 unique stars using a suite of advanced reduction pipelines focusing on stellar atmospheric parameters, in particular purely spectroscopically derived stellar atmospheric parameters (Teff, log g, and the overall metallicity), enhanced stellar atmospheric parameters inferred via a Bayesian pipeline using Gaia DR2 astrometric priors, and asteroseismically calibrated stellar atmospheric parameters for giant stars based on asteroseismic observations for 699 K2 stars. In addition, we provide abundances of the elements Fe, Al, and Ni, as well as an overall [α/Fe] ratio obtained using a new pipeline based on the GAUGUIN optimization method that is able to deal with variable signal-to-noise ratios. The RAVE DR6 catalogs are cross-matched with relevant astrometric and photometric catalogs, and are complemented by orbital parameters and effective temperatures based on the infrared flux method. The data can be accessed via the RAVE website (http://rave-survey.org) or the Vizier database.
  •  
6.
  • Walcher, C.~J., et al. (författare)
  • 4MOST Scientific Operations
  • 2019
  • Ingår i: Messenger. - 0722-6691. ; 175, s. 12-16
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The 4MOST instrument is a multi-object spectrograph that will address Galactic and extragalactic science cases simultaneously by observing targets from a large number of different surveys within each science exposure. This parallel mode of operation and the survey nature of 4MOST require some distinct 4MOST- specific operational features within the overall operations model of ESO. The main feature is that the 4MOST Consortium will deliver, not only the instrument, but also contractual services to the user community, which is why 4MOST is also described as a facility. This white paper concentrates on information particularly useful to answering the forthcoming Call for Letters of Intent.
  •  
7.
  • Wojno, Jennifer, et al. (författare)
  • The selection function of the RAVE survey
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 468:3, s. 3368-3380
  • Tidskriftsartikel (refereegranskat)abstract
    • We characterize the selection function of RAdial Velocity Experiment (RAVE) using 2 Micron All Sky Survey (2MASS) as our underlying population, which we assume represents all stars that could have potentially been observed.We evaluate the completeness fraction as a function of position, magnitude and colour in two ways: first, on a field-by-field basis, and second, in equal-size areas on the sky. Then, we consider the effect of the RAVE stellar parameter pipeline on the final resulting catalogue, which in principle limits the parameter space over which our selection function is valid. Our final selection function is the product of the completeness fraction and the selection function of the pipeline. We then test if the application of the selection function introduces biases in the derived parameters. To do this, we compare a parent mock catalogue generated using GALAXIA with a mock-RAVE catalogue where the selection function of RAVE has been applied. We conclude that for stars brighter than I = 12, between 4000 < Teff < 8000K and 0.5 < log g < 5.0, RAVE is kinematically and chemically unbiased with respect to expectations from GALAXIA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy