SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ergun Robert E.) "

Sökning: WFRF:(Ergun Robert E.)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nakamura, Rumi, et al. (författare)
  • Structure of the Current Sheet in the 11 July 2017 Electron Diffusion Region Event
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 124:2, s. 1173-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail. Plain Language Summary Magnetic reconnection is the process by which magnetic field lines coming from one region are broken and reconnected with magnetic field lines coming from another region. The simplest descriptions of magnetic reconnection are two dimensional, and a number of theoretical predictions have been made using the two-dimensional assumption. We study a magnetic reconnection event observed by the Magnetospheric Multiscale spacecraft on 11 July 2017 and find approximate agreement between the observations and the predictions of a two-dimensional model. The agreement includes the scale size of the reconnection region, details of the particle orbits, and the rate of reconnection.
  •  
2.
  • Giagkiozis, Stefanos, et al. (författare)
  • Statistical Study of the Properties of Magnetosheath Lion Roars
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:7, s. 5435-5451
  • Tidskriftsartikel (refereegranskat)abstract
    • Lion roars are narrowband whistler wave emissions that have been observed in several environments, such as planetary magnetosheaths, the Earth's magnetosphere, the solar wind, downstream of interplanetary shocks, and the cusp region. We present measurements of more than 30,000 such emissions observed by the Magnetospheric Multiscale spacecraft with high-cadence (8,192 samples/s) search coil magnetometer data. A semiautomatic algorithm was used to identify the emissions, and an adaptive interval algorithm in conjunction with minimum variance analysis was used to determine their wave vector. The properties of the waves are determined in both the spacecraft and plasma rest frame. The mean wave normal angle, with respect to the background magnetic field (B-0), plasma bulk flow velocity (V-b), and the coplanarity plane (V-b x B-0) are 23 degrees, 56 degrees, and 0 degrees, respectively. The average peak frequencies were similar to 31% of the electron gyrofrequency (omega(ce)) observed in the spacecraft frame and similar to 18% of omega(ce) in the plasma rest frame. In the spacecraft frame, similar to 99% of the emissions had a frequency < omega(ce), while 98% had a peak frequency < 0.72 omega(ce) in the plasma rest frame. None of the waves had frequencies lower than the lower hybrid frequency, omega. From the probability density function of the electron plasma beta(e), the ratio between the electron thermal and magnetic pressure, similar to 99.6% of the waves were observed with beta(e) < 4 with a large narrow peak at 0.07 and two smaller, but wider, peaks at 1.26 and 2.28, while the average value was similar to 1.25.
  •  
3.
  • Gingell, Imogen, et al. (författare)
  • MMS Observations and Hybrid Simulations of Surface Ripples at a Marginally Quasi-Parallel Shock
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:11, s. 11003-11017
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations and observations of collisionless shocks have shown that deviations of the nominal local shock normal orientation, that is, surface waves or ripples, are expected to propagate in the ramp and overshoot of quasi-perpendicular shocks. Here we identify signatures of a surface ripple propagating during a crossing of Earth's marginally quasi-parallel (theta(Bn) similar to 45 degrees) or quasi-parallel bow shock on 27 November 2015 06: 01: 44 UTC by the Magnetospheric Multiscale (MMS) mission and determine the ripple's properties using multispacecraft methods. Using two-dimensional hybrid simulations, we confirm that surface ripples are a feature of marginally quasi-parallel and quasi-parallel shocks under the observed solar wind conditions. In addition, since these marginally quasi-parallel and quasi-parallel shocks are expected to undergo a cyclic reformation of the shock front, we discuss the impact of multiple sources of nonstationarity on shock structure. Importantly, ripples are shown to be transient phenomena, developing faster than an ion gyroperiod and only during the period of the reformation cycle when a newly developed shock ramp is unaffected by turbulence in the foot. We conclude that the change in properties of the ripple observed by MMS is consistent with the reformation of the shock front over a time scale of an ion gyroperiod.
  •  
4.
  • Goodrich, Katherine A., et al. (författare)
  • MMS Multipoint electric field observations of small-scale magnetic holes
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5953-5959
  • Tidskriftsartikel (refereegranskat)abstract
    • Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earth's magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (rho(i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.
  •  
5.
  • Le Contel, O., et al. (författare)
  • Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5943-5952
  • Tidskriftsartikel (refereegranskat)abstract
    • We present Magnetospheric Multiscale (MMS) mission measurements during a full magnetopause crossing associated with an enhanced southward ion flow. A quasi-steady magnetospheric whistler mode wave emission propagating toward the reconnection region with quasi-parallel and oblique wave angles is detected just before the opening of the magnetic field lines and the detection of escaping energetic electrons. Its source is likely the perpendicular temperature anisotropy of magnetospheric energetic electrons. In this region, perpendicular and parallel currents as well as the Hall electric field are calculated and found to be consistent with the decoupling of ions from the magnetic field and the crossing of a magnetospheric separatrix region. On the magnetosheath side, Hall electric fields are found smaller as the density is larger but still consistent with the decoupling of ions. Intense quasi-parallel whistler wave emissions are detected propagating both toward and away from the reconnection region in association with a perpendicular anisotropy of the high-energy part of the magnetosheath electron population and a strong perpendicular current, which suggests that in addition to the electron diffusion region, magnetosheath separatrices could be a source region for whistler waves.
  •  
6.
  • Lee, Justin H., et al. (författare)
  • Application of Cold and Hot Plasma Composition Measurements to Investigate Impacts on Dusk-Side Electromagnetic Ion Cyclotron Waves
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An extended interval of perturbed magnetospheric conditions in November 2016 supported increased convection and sunward transport of plasmaspheric material. During this period of time the Magnetospheric Multiscale satellites, with their apogees along Earth's dusk-side outer magnetosphere, encountered several cold plasma density structures at the same time as plasma bulk flows capable of accelerating hidden cold plasma occurred. Investigating the charged particle and fields data during two subintervals showed that the satellites made direct measurements of cold plasmaspheric ions embedded within multicomponent hot plasmas as well as electromagnetic emissions consistent with electromagnetic ion cyclotron (EMIC) waves. The complex in situ ion composition measurements were applied to linear wave modeling to interpret the impacts of cold and hot ion species on wave growth and band structure. Although the waves for both intervals were predicted to have peak growth rate below omega(He+), substantial differences were observed among all other dispersive properties. The modeling also showed EMIC waves generated in the presence of heavy ions had growth rates and unstable wave numbers always smaller than predicted for a pure proton-electron plasma. The results provide implications for future investigation of EMIC wave generation with and without direct measurements of the cold and hot plasma composition as well as of subsequent wave-particle interactions.
  •  
7.
  • Lee, Justin H., et al. (författare)
  • MMS Measurements and Modeling of Peculiar Electromagnetic Ion Cyclotron Waves
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007.
  • Tidskriftsartikel (refereegranskat)abstract
    • Orbiting Earth's dayside outer magnetosphere on 29 September 2015, the Magnetospheric Multiscale (MMS) satellites measured plasma composition, simultaneous electromagnetic ion cyclotron waves, and intermittent fast plasma flows consistent with ultralow frequency waves or convection. Such flows can accelerate typically unobservable low-energy plasma into a measurable energy range of spacecraft plasma instrumentation. We exploit the flow occurrence to ensure measurement of cold ion species alongside the hot particles-consisting of ionospheric heavy ions and solar wind He++-during a subinterval of wave emissions with spectral properties previously described as peculiar. Through application of the composition and multisatellite wave vector data to linear theory, we demonstrate the emissions are in fact consistent with theory, growing naturally in the He++ band with sufficient free energy.
  •  
8.
  • Lewis, Harry C., et al. (författare)
  • Magnetospheric Multiscale measurements of turbulent electric fields in earth's magnetosheath : How do plasma conditions influence the balance of terms in generalized Ohm's law?
  • 2023
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 30:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulence is ubiquitous within space plasmas, where it is associated with numerous nonlinear interactions. Magnetospheric Multiscale (MMS) provides the unique opportunity to decompose the electric field (E) dynamics into contributions from different linear and nonlinear processes via direct measurements of the terms in generalized Ohm's law. Using high-resolution multipoint measurements, we compute the magnetohydrodynamic ( E MHD ), Hall ( E Hall ), electron pressure ( E P e ), and electron inertia ( E inertia ) terms for 60 turbulent magnetosheath intervals, to uncover the varying contributions to the dynamics as a function of scale for different plasma conditions. We identify key spectral characteristics of the Ohm's law terms: the Hall scale, k Hall , where E Hall becomes dominant over E MHD ; the relative amplitude of E P e to E Hall , which is constant in the sub-ion range; and the relative scaling of the nonlinear and linear components of E MHD and of E Hall , which are independent of scale. We find expressions for the characteristics as a function of plasma conditions. The underlying relationship between turbulent fluctuation amplitudes and ambient plasma conditions is discussed. Depending on the interval, we observe that E MHD and E Hall can be dominated by either nonlinear or linear dynamics. We find that E P e is dominated by its linear contributions, with a tendency for electron temperature fluctuations to dominate at small scales. The findings are not consistent with existing linear kinetic Alfvén wave theory for isothermal fluctuations. Our work shows how contributions to turbulent dynamics change in different plasma conditions, which may provide insight into other turbulent plasma environments.
  •  
9.
  • Nakamura, Rumi, et al. (författare)
  • Multiscale Currents Observed by MMS in the Flow Braking Region
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:2, s. 1260-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold ExB drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
  •  
10.
  • Nakamura, Rumi, et al. (författare)
  • Near-Earth plasma sheet boundary dynamics during substorm dipolarization
  • 2017
  • Ingår i: Earth Planets and Space. - : Springer Berlin/Heidelberg. - 1343-8832 .- 1880-5981. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL similar to -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 RE were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) Bz disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another fieldaligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.
  •  
11.
  • Schwartz, Steven J., et al. (författare)
  • Ion Kinetics in a Hot Flow Anomaly : MMS Observations
  • 2018
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 45:21, s. 11520-11529
  • Tidskriftsartikel (refereegranskat)abstract
    • Hot Flow Anomalies (HFAs) are transients observed at planetary bow shocks, formed by the shock interaction with a convected interplanetary current sheet. The primary interpretation relies on reflected ions channeled upstream along the current sheet. The short duration of HFAs has made direct observations of this process difficult. We employ high resolution measurements by NASA's Magnetospheric Multiscale Mission to probe the ion microphysics within a HFA. Magnetospheric Multiscale Mission data reveal a smoothly varying internal density and pressure, which increase toward the trailing edge of the HFA, sweeping up particles trapped within the current sheet. We find remnants of reflected or other backstreaming ions traveling along the current sheet, but most of these are not fast enough to out-run the incident current sheet convection. Despite the high level of internal turbulence, incident and backstreaming ions appear to couple gyro-kinetically in a coherent manner. Plain Language Summary Shock waves in space are responsible for energizing particles and diverting supersonic flows around planets and other obstacles. Explosive events known as Hot Flow Anomalies (HFAs) arise when a rapid change in the interplanetary magnetic field arrives at the bow shock formed by, for example, the supersonic solar wind plasma flow from the Sun impinging on the Earth's magnetic environment. HFAs are known to produce impacts all the way to ground level, but the physics responsible for their formation occur too rapidly to be resolved by previous satellite missions. This paper employs NASA's fleet of four Magnetospheric Multiscale satellites to reveal for the first time clear, discreet populations of ions that interact coherently to produce the extreme heating and deflection.
  •  
12.
  • Catapano, Filomena, et al. (författare)
  • In Situ Evidence of Ion Acceleration between Consecutive Reconnection Jet Fronts
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 908:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Processes driven by unsteady reconnection can efficiently accelerate particles in many astrophysical plasmas. An example is the reconnection jet fronts in an outflow region. We present evidence of suprathermal ion acceleration between two consecutive reconnection jet fronts observed by the Magnetospheric Multiscale mission in the terrestrial magnetotail. An earthward propagating jet is approached by a second faster jet. Between the jets, the thermal ions are mostly perpendicular to magnetic field, are trapped, and are gradually accelerated in the parallel direction up to 150 keV. Observations suggest that ions are predominantly accelerated by a Fermi-like mechanism in the contracting magnetic bottle formed between the two jet fronts. The ion acceleration mechanism is presumably efficient in other environments where jet fronts produced by variable rates of reconnection are common and where the interaction of multiple jet fronts can also develop a turbulent environment, e.g., in stellar and solar eruptions.
  •  
13.
  • Eriksson, Elin, 1989-, et al. (författare)
  • Electron Energization at a Reconnecting Magnetosheath Current Sheet
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:16, s. 8081-8090
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of electron energization within a sub-ion-scale magnetosheath current sheet (CS). A number of signatures indicate ongoing reconnection, including the thickness of the CS (similar to 0.7 ion inertial length), nonzero normal magnetic field, Hall magnetic fields with electrons carrying the Hall currents, and electron heating. We observe localized electron acceleration and heating parallel to the magnetic field at the edges of the CS. Electrostatic waves observed in these regions have low phase velocity and small wave potentials and thus cannot provide the observed acceleration and heating. Instead, we find that the electrons are accelerated by a parallel potential within the separatrix regions. Similar acceleration has been reported based on magnetopause and magnetotail observations. Thus, despite the different plasma conditions in magnetosheath, magnetopause, and magnetotail, the acceleration mechanism and corresponding heating of electrons is similar. Plain Language Summary Magnetic reconnection is an important physical energy conversion process in astrophysical and laboratory plasmas. The easiest place to analyze magnetic reconnection is in near-Earth space. Due to lack of sufficient electron resolution of previous spacecraft missions, there are many unanswered questions regarding electron heating and acceleration processes at small scales. In particular, the regime where thermal pressure dominates over magnetic pressure, the most common state of plasmas in the Universe, is little explored. In this letter we study such a regime using the four-spacecraft Magnetospheric Multiscale mission. We analyze a reconnecting current sheet in the magnetosheath. We show that electrons are energized by a parallel potential, similar to what has been observed in the different plasma regimes the magnetopause and magnetotail. Thus, despite different plasma conditions, a similar acceleration mechanism and corresponding heating of electrons is occurring in all these regions.
  •  
14.
  • Fowler, C. M., et al. (författare)
  • The first in situ electron temperature and density measurements of the Martian nightside ionosphere
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:21, s. 8854-8861
  • Tidskriftsartikel (refereegranskat)abstract
    • The first in situ nightside electron density and temperature profiles at Mars are presented as functions of altitude and local time (LT) from the Langmuir Probe and Waves (LPW) instrument on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission spacecraft. LPW is able to measure densities as low as similar to 100 cm(-3), a factor of up to 10 or greater improvement over previous measurements. Above 200 km, near-vertical density profiles of a few hundred cubic centimeters were observed for almost all nightside LT, with the lowest densities and highest temperatures observed postmidnight. Density peaks of a few thousand cubic centimeters were observed below 200 km at all nightside LT. The lowest temperatures were observed below 180 km and approach the neutral atmospheric temperature. One-dimensional modeling demonstrates that precipitating electrons were able to sustain the observed nightside ionospheric densities below 200 km.
  •  
15.
  • Franci, Luca, et al. (författare)
  • Modeling MMS Observations at the Earth's Magnetopause with Hybrid Simulations of Alfvenic Turbulence
  • 2020
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 898:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetospheric Multiscale (MMS) observations of plasma turbulence generated by a Kelvin-Helmholtz (KH) event at the Earth's magnetopause are compared with a high-resolution two-dimensional (2D) hybrid direct numerical simulation of decaying plasma turbulence driven by large-scale balanced Alfvenic fluctuations. The simulation, set up with four observation-driven physical parameters (ion and electron betas, turbulence strength, and injection scale), exhibits a quantitative agreement on the spectral, intermittency, and cascade-rate properties with in situ observations, despite the different driving mechanisms. Such agreement demonstrates a certain universality of the turbulent cascade from magnetohydrodynamic to sub-ion scales, whose properties are mainly determined by the selected parameters, also indicating that the KH instability-driven turbulence has a quasi-2D nature. The fact that our results are compatible with the validity of the Taylor hypothesis, in the whole range of scales investigated numerically, suggests that the fluctuations at sub-ion scales might have predominantly low frequencies. This would be consistent with a kinetic Alfven wave-like nature and/or with the presence of quasi-static structures. Finally, the third-order structure function analysis indicates that the cascade rate of the turbulence generated by a KH event at the magnetopause is an order of magnitude larger than in the ambient magnetosheath.
  •  
16.
  • Li, Jinxing, et al. (författare)
  • Local Excitation of Whistler Mode Waves and Associated Langmuir Waves at Dayside Reconnection Regions
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:17, s. 8793-8802
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Earth's dayside reconnection boundary layer, whistler mode waves coincide with magnetic field openings and the formation of the resultant anisotropic electrons. Depending on the energy range of anisotropic electrons, whistlers can grow at frequencies in the upper and/or lower band. Observations show that whistler mode waves modulate Langmuir wave amplitude as they propagate toward the X line. Observations of whistler mode wave phase and Langmuir waves packets, as well as coincident electron measurements, reveal that whistler mode waves can accelerate electrons via Landau resonance at locations where E(parallel to)is antiparallel to the wave propagation direction. The accelerated electrons produce localized beams, which subsequently drive the periodically modulated Langmuir waves. The close association of those two wave modes reveals the microscale electron dynamics in the exhaust region, and the proposed mechanism could potentially be applied to explain the modulation events observed in planetary magnetospheres and in the solar wind. Plain Language Summary The Sun's and Earth's magnetic field can merge and reconnect on dayside magnetopause. Using measurements from NASA's MMS spacecraft, we report that a class of electromagnetic wave, named whistler mode wave, coincides with the reconnected magnetic field lines. Besides, those whistlers are observed to modulate the electric field oscillations, known as Langmuir waves. Using high-resolution wave and particle measurements, we explain that the whistlers are locally excited when electrons from both sides of the magnetopause mix and form an unstable distribution. The modulated Langmuir waves are generated due to localized electron acceleration, which occurs when the velocity of electrons matches that of whistlers in the direction along the magnetic field. The whistler mode waves and associated Langmuir waves can be used as an additional tool to remotely sense the occurrence of magnetic reconnections.
  •  
17.
  • Li, Xing-Yu, et al. (författare)
  • Comparative Study of Dayside Pulsating Auroras Induced by Ultralow-Frequency Waves
  • 2023
  • Ingår i: Universe. - : MDPI AG. - 2218-1997. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsating auroras are usually observed with ultralow-frequency (ULF) waves in the Pc 3-5 band (period 10-600 s). These auroras are thought to result from interactions between energetic electrons and chorus waves, but their relationship with ULF waves remains an open question. In this study, we investigated this question by conducting a comparative study on two ULF wave events with pulsating auroras observed near the magnetic footprints. Conjugate observations from the Magnetospheric Multiscale mission and the Chinese Yellow River Station were used. In both events, lower-band chorus waves were observed, which were suggested to be connected with the auroral pulsations by wavelet analysis. The intensity of these waves oscillates at the period of the ULF waves, but the physics laid behind them differs by events. During the event of 22 January 2019, compressional ULF waves changed the threshold for the whistler anisotropy instability periodically, affecting the emission of chorus waves. In the event on 10 January 2016, poloidal ULF waves modulated the chorus wave generation by regulating electron temperature anisotropy through drift resonance. ULF waves in these events may originate from perturbations in the solar wind. We highlight the role of ULF waves in the solar wind-magnetosphere-ionosphere coupling, which requires further study.
  •  
18.
  • Li, Xing-Yu, et al. (författare)
  • ULF Wave-Induced Ion Pitch Angle Evolution in the Dayside Outer Magnetosphere
  • 2022
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 49:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Drift-bounce resonance between ultralow frequency (ULF) waves and ions is essential for ion energization in the magnetosphere. Here, we present the first comprehensive study of drift-bounce resonance in the dayside outer magnetosphere, where off-equatorial magnetic field minima would strongly distort ions' bounce and drift motion. A generalized theory is proposed, in which the effects of off-equatorial minima, time-evolving fields and ion bounce motion are taken into account. In consequence of these effects, ion pitch angle distributions undergo dramatic changes. In the presence of off-equatorial minima, the time-of-flight effect of ion bounce motion forms latitude-dependent dispersions besides "paw-track shaped" structures, while evolving wave fields cause time-dependent phase shifts in "paw-tracks." All the predicted signatures have been confirmed by 5 years of Magnetospheric Multiscale spacecraft data and numerical simulations. These results allow us to better understand the interactions between ULF waves and thermal ion species in global magnetospheric dynamics.
  •  
19.
  • Malaspina, David M., et al. (författare)
  • Langmuir wave harmonics due to driven nonlinear currents
  • 2013
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 118:11, s. 6880-6888
  • Tidskriftsartikel (refereegranskat)abstract
    • The conversion of Langmuir waves into electromagnetic radiation near the local plasma frequency (f(pe)) and twice the local plasma frequency (2f(pe)) occurs in diverse heliospheric environments including along the path of type III radio bursts, at interplanetary shocks, and in planetary foreshocks. This radiation has the potential to act as a probe of remote plasma conditions, provided that the conversion mechanism is well understood. One candidate conversion mechanism is the antenna radiation of localized Langmuir waves. Antenna radiation near 2f(pe) requires the presence of nonlinear currents at 2f(pe). In this work, properties of these currents are predicted from theory and compared with observations of Langmuir wave electric fields made using the WAVES instrument on the STEREO spacecraft. It is found that the observed frequency structure, polarization, and wave number ratio are consistent with nonlinear current predictions, once electric fields near 2f(pe)consistent with sheath effects are taken into account.
  •  
20.
  • Oka, Mitsuo, et al. (författare)
  • Particle Acceleration by Magnetic Reconnection in Geospace
  • 2023
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 219
  • Forskningsöversikt (refereegranskat)abstract
    • Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth's magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth's magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.
  •  
21.
  • Pan, Dong-Xiao, et al. (författare)
  • Rippled Electron-Scale Structure of a Dipolarization Front
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:22, s. 12116-12124
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the Magnetospheric Multiscale mission to investigate electron-scale structures at a dipolarization front. The four spacecraft are separated by electron scales and observe large differences in plasma and field parameters within the dipolarization front, indicating strong deviation from typically assumed plane or slightly curved front surface. We attribute this to ripples generated by the lower hybrid drift instability (LHDI) with wave number of k(rho e)similar or equal to 0.4 and maximum wave potential of similar to 1 kV similar to k(B)T(e). Power law-like spectra of E-perpendicular to with slope of -3 indicates the turbulent cascade of LHDI. LHDI is observed together with bursty high-frequency parallel electric fields, suggesting coupling of LHDI to higher-frequency electrostatic waves. Plain Language Summary Dipolarization fronts (DFs) are narrow boundaries with sharp enhancement of magnetic field, located at the leading part of fast plasma jets observed in Earth's magnetotail. DFs are typically assumed to be smooth boundaries at scales comparable to the ion gyroradius and below. In this study, we use the four Magnetospheric Multiscale spacecraft separated by several electron gyroradii to investigate fine structure of a DF. Surprisingly, we observe significant differences in the fields and plasma measurements between the spacecraft despite their small separation. We attribute these signatures to electron-scale disturbances propagating along the DF surface, and thus the DF surface is not smooth as expected but rather rippled. The ripples develop as a result of a plasma instability driven by the strong inhomogeneities present at the DF. The fact that the ripples have such small scales means that they can effectively interact with plasma electrons.
  •  
22.
  • Roux, A., et al. (författare)
  • A mechanism for heating electrons in the magnetopause current layer and adjacent regions
  • 2011
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 29:12, s. 2305-2316
  • Tidskriftsartikel (refereegranskat)abstract
    • Taking advantage of the string-of-pearls configuration of the five THEMIS spacecraft during the early phase of their mission, we analyze observations taken simultaneously in the magnetosheath, the magnetopause current layer and the magnetosphere. We find that electron heating coincides with ultra low frequency waves. It seems unlikely that electrons are heated by these waves because the electron thermal velocity is much larger than the Alfven velocity (V-a). In the short transverse scale (k (perpendicular to) rho(i) >> 1) regime, however, short scale Alfven waves (SSAWs) have parallel phase velocities much larger than V-a and are shown to interact, via Landau damping, with electrons thereby heating them. The origin of these waves is also addressed. THEMIS data give evidence for sharp spatial gradients in the magnetopause current layer where the highest amplitude waves have a large component delta B perpendicular to the magnetopause and k azimuthal. We suggest that SSAWs are drift waves generated by temperature gradients in a high beta, large T-i/T-e magnetopause current layer. Therefore these waves are called SSDAWs, where D stands for drift. SSDAWs have large k(perpendicular to) and therefore a large Doppler shift that can exceed their frequencies in the plasma frame. Because they have a small but finite parallel electric field and a magnetic component perpendicular to the magnetopause, they could play a key role at reconnecting magnetic field lines. The growth rate depends strongly on the scale of the gradients; it becomes very large when the scale of the electron temperature gradient gets below 400 km. Therefore SSDAW's are expected to limit the sharpness of the gradients, which might explain why Berchem and Russell (1982) found that the average magnetopause current sheet thickness to be similar to 400-1000 km (similar to 500 km in the near equatorial region).
  •  
23.
  • Toledo-Redondo, Sergio, et al. (författare)
  • Energy budget and mechanisms of cold ion heating in asymmetric magnetic reconnection
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 122:9, s. 9396-9413
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold ions (few tens of eV) of ionospheric origin are commonly observed on the magnetospheric side of the Earth's dayside magnetopause. As a result, they can participate in magnetic reconnection, changing locally the reconnection rate and being accelerated and heated. We present four events where cold ion heating was observed by the Magnetospheric Multiscale mission, associated with the magnetospheric Hall E field region of magnetic reconnection. For two of the events the cold ion density was small compared to the magnetosheath density, and the cold ions were heated roughly to the same temperature as magnetosheath ions inside the exhaust. On the other hand, for the other two events the cold ion density was comparable to the magnetosheath density and the cold ion heating observed was significantly smaller. Magnetic reconnection converts magnetic energy into particle energy, and ion heating is known to dominate the energy partition. We find that at least 10-25% of the energy spent by reconnection into ion heating went into magnetospheric cold ion heating. The total energy budget for cold ions may be even higher when properly accounting for the heavier species, namely helium and oxygen. Large E field fluctuations are observed in this cold ion heating region, i.e., gradients and waves, that are likely the source of particle energization. Plain Language Summary The magnetic field of Earth creates a natural shield that isolates and protects us from the particles and fields coming from our star, the Sun. This natural shield is called the magnetosphere and is filled by plasma. The particles coming from the Sun form another plasma called the solar wind and are usually deviated around the magnetosphere. However, under certain circumstances these two plasmas can reconnect (magnetic reconnection), and part of the energy and mass of the two plasmas is interchanged. Magnetic reconnection is the driver of storms and substorms inside the magnetosphere. In this work, we investigate what occurs to particles of very low energy (cold ions) of ionospheric origin when they reach the reconnecting boundary of the magnetosphere. It is found that they are energized and take an important part of the energy spent in reconnecting the plasmas. The plasma boundary develops spatial structures and emits waves that are able to heat the cold ions. Once heated, these cold ions irreversibly will escape the Earth's magnetosphere to never come back to Earth.
  •  
24.
  • Toledo-Redondo, Sergio, et al. (författare)
  • Perpendicular Current Reduction Caused by Cold Ions of Ionospheric Origin in Magnetic Reconnection at the Magnetopause : Particle-in-Cell Simulations and Spacecraft Observations
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:19, s. 10033-10042
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold ions of ionospheric origin are present throughout the Earth's magnetosphere, including the dayside magnetopause, where they modify the properties of magnetic reconnection, a major coupling mechanism at work between the magnetosheath and the magnetosphere. We present Magnetospheric MultiScale (MMS) spacecraft observations of the reconnecting magnetopause with different amounts of cold ions and show that their presence reduces the Hall term in the Ohm's law. Then, we compare two particle-in-cell simulations, with and without cold ions on the magnetospheric side. The cold ions remain magnetized inside the magnetospheric separatrix region, leading to the reduction of the perpendicular currents associated with the Hall effect. Moreover, this reduction is proportional to the relative number density of cold ions. And finally, the Hall electric field peak is reduced along the magnetospheric separatrix owing to cold ions. This should have an effect on energy conversion by reconnection from electromagnetic fields to kinetic energy of the particles. Plain Language Summary The magnetic field of Earth creates a natural boundary that isolates and protects us from the particles and fields coming from the Sun, typically known as the solar wind. This natural shield is called the magnetosphere and is filled by plasma. The particles are coming from the solar wind and are usually deviated around the magnetosphere. However, various mechanisms are capable of interconnecting these two regions of plasma, permitting the exchange of mass and energy. Magnetic reconnection is a primary coupling mechanism and the driver of storms and substorms inside the magnetosphere. In this work, we investigate what occurs when particles of very low energy (cold ions) of ionospheric origin reach the reconnecting boundary between the solar wind and the magnetosphere. We use both spacecraft observations and numerical simulations, and we find that they modify the way reconnection operates, by reducing the currents carried by electrons. The electric fields associated with energization of particles are reduced as well under the presence of cold ions coming from the ionosphere.
  •  
25.
  • Wang, Tieyan, et al. (författare)
  • Magnetospheric Multiscale Observation of Kinetic Signatures in the Alfven Vortex
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 871:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Alfven vortex is a multiscale nonlinear structure that contributes to the intermittency of turbulence. Despite previous explorations mostly on the spatial properties of the Alfven vortex (i.e., scale, orientation, and motion), the plasma characteristics within the Alfven vortex are unknown. Moreover, the connection between the plasma energization and the Alfven vortex still remains unclear. Based on high-resolution in situ measurements from the Magnetospheric Multiscale mission, we report for the first time distinctive plasma features within an Alfven vortex. This Alfven vortex is identified as being a 2D (k(perpendicular to) >> k(parallel to) ) quasi-monopole with a radius of 10 proton gyroscales. Its magnetic fluctuations delta B-perpendicular to are anti-correlated with velocity fluctuations delta V-perpendicular to, thus the parallel current density j(parallel to) and flow vorticity omega(parallel to) are anti-aligned. In different part of the vortex (i.e., edge, middle, center), the ion and electron temperatures are found to be quite different and they behave in the reverse trend: the ion temperature variations are correlated with j(parallel to), while the electron temperature variations are correlated with omega(parallel to). Furthermore, the temperature anisotropies, together with the non-Maxwellian kinetic effects, exhibit strong enhancement at peaks of vertical bar omega(parallel to)vertical bar(vertical bar j(parallel to)vertical bar) within the vortex. Comparison between observations and numerical/theoretical results are made. In addition, the energy-conversion channels and the compressibility associated with the Alfven vortex are discussed. These results may help to understand the link between coherent vortex structures and the kinetic processes, which determines how turbulence energy dissipates in the weakly collisional space plasmas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy