SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ericson Fredric) "

Sökning: WFRF:(Ericson Fredric)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chábera, Pavel, et al. (författare)
  • A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 543:7647, s. 695-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal complexes are used as photosensitizers1, in light-emitting diodes, for biosensing and in photocatalysis2. A key feature in these applications is excitation from the ground state to a charge-transfer state3,4; the long charge-transfer-state lifetimes typical for complexes of ruthenium5 and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron6 and copper7 being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs6,8,9,10, it remains a formidable scientific challenge11 to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered12 photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers13,14,15. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes4,16,17. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
  •  
2.
  • Ericson, Fredric, et al. (författare)
  • Electronic structure and excited state properties of iron carbene photosensitizers - A combined X-ray absorption and quantum chemical investigation
  • 2017
  • Ingår i: Chemical Physics Letters. - : Elsevier BV. - 0009-2614. ; 683, s. 559-566
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure and excited state properties of a series of iron carbene photosensitizers are elucidated through a combination of X-ray absorption measurements and density functional theory calculations. The X-ray absorption spectra are discussed with regard to the unusual bonding environment in these carbene complexes, highlighting the difference between ferrous and ferric carbene complexes. The valence electronic structure of the core excited FeIII-3d5 complex is predicted by calculating the properties of a CoIII-3d6 carbene complex using the Z+1 approximation. Insight is gained into the potential of sigma-donating ligands as strategy to tune properties for light harvesting applications.
  •  
3.
  •  
4.
  • Grandfield, Kathryn, 1986-, et al. (författare)
  • Ultrastructural characterisation of the hydroxyapatite–coated pedicle screw and human bone interface
  • 2012
  • Ingår i: International Journal of Nano and Biomaterials. - 1752-8933 .- 1752-8941. ; 4:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The early fixation of pedicle screws is crucial for improving spinal stabilisation. Firm and immediate fixation between pedicle screws and bone prevents aseptic loosening and implant failure. Coating with hydroxyapatite is a possible method to improve the fixation of metallic implants in bone. In this study, scanning transmission electron microscopy (STEM) has been used to investigate the ultrastructure of the plasma–sprayed hydroxyapatite coating and human bone interface in detail. Focused ion beam sample preparation also enabled the investigation of the bone–lacunae interface. An intimate contact and elemental analysis between bone and HA coatings suggests bioactive fixation. Therefore, coating with hydroxyapatite leads to enhanced biocompatibility at the ultrastructural level and may lead to improved early and long–term fixation of pedicle screws.
  •  
5.
  • Huang, Tao, et al. (författare)
  • Dairy Consumption and Body Mass Index Among Adults : Mendelian Randomization Analysis of 184802 Individuals from 25 Studies
  • 2018
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 64:1, s. 183-191
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined.METHODS: We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies.RESULTS: Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14–0.25) serving/day higher dairy intake (P = 3.15 × 10−12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher BMI (P = 2.11 × 10−5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27–0.92; P = 3.0 × 10−4).CONCLUSIONS: The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Jarmar, Tobias, 1974- (författare)
  • High-Resolution Studies of Silicide-films for Nano IC-Components
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The function of titanium- and nickel-silicides is to lower the series resistance and contact resistivity in gate, source and drain contacts of an integrated circuit transistor. With decreasing dimensions, the low resistivity C54 TiSi2 is not formed and stays in its high resistivity phase C49. It was found that a layer of niobium interposed between titanium and silicon, which is supposed to promote the C54 phase, led to the formation of the high resistivity C40 (Ti,Nb)Si2 in both small and large contacts. Increased interest in Si1-xGex layers led to the inclusion of the Ni-Si-Ge system in this project. The interaction between nickel and poly-Si0.42Ge0.58 was found to be different from nickel and poly-silicon in the meaning of the phases formed during high temperature annealing. High-resistivity NiSi2 was formed at 750°C, but nickel and Si0.42Ge0.58 formed no disilicide. A massive out-diffusion of germanium from the NiSi1-uGeu resulted in agglomeration at lower temperatures than for NiSi. This was ascribed to the larger enthalpy of formation for nickel reacting with silicon than with germanium. Ternary phase diagrams, with and without the disilicide phase, were calculated. According to the tie lines, NiSi1-uGeu will be in thermodynamic equilibrium with Si1-xGex when u is smaller than x. This was confirmed experimentally, where a balanced germanium concentration in NiSi1-uGeu and Si1-xGex, stabilized the germanosilicide. When nickel interacted with strained and relaxed silicon-germanium it was established that a strained substrate led to a morphologically unstable NiSi1-uGeu. The germanosilicide was highly textured on both (001) and (111) substrates. The texturing was explained by the absence of Ni(SiGe)2 which forced NiSiGe to reorient so as not to resemble a digermanosilicide at the film/substrate interface. NiSi0.82Ge0.18 formed on p+-Si0.82Ge0.18 in CBKs grew laterally under the SiO2, defining the contact hole. The contact resistivity extracted by 3D modelling was 5×10-8 Ωcm2.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  • Knaust, Stefan (författare)
  • Microsystems for Harsh Environments
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • When operating microsystems in harsh environments, many conventionally used techniques are limiting. Further, depending on if the demands arise from the environment or the conditions inside the system, different approaches have to be used. This thesis deals with the challenges encountered when microsystems are used at high pressures and high temperatures.For microsystems operating at harsh conditions, many parameters will vary extensively with both temperature and pressure, and to maintain control, these variations needs to be well understood. Covered within this thesis is the to-date strongest membrane micropump, demonstrated to pump against back-pressures up to 13 MPa, and a gas-tight high pressure valve that manages pressures beyond 20 MPa.With the ability to manipulate fluids at high pressures in microsystems at elevated temperatures, opportunities are created to use green solvents like supercritical fluids like CO2. To allow for a reliable and predictable operation in systems using more than one fluid, the behavior of the multiphase flow needs to be controlled. Therefore, the effect of varying temperature and pressure, as well as flow conditions were investigated for multiphase flows of CO2 and H2O around and above the critical point of CO2. Also, the influence of channel surface and geometry was investigated.Although supercritical CO2 only requires moderate temperatures, other supercritical fluids or reactions require much higher temperatures. The study how increasing temperature affects a system, a high-temperature testbed inside an electron microscope was created.One of the challenges for high-temperature systems is the interface towards room temperature components. To circumvent the need of wires, high temperature wireless systems were studied together with a wireless pressure sensing system operating at temperatures up to 1,000 °C for pressures up to 0.3 MPa.To further extend the capabilities of microsystems and combine high temperatures and high pressures, it is necessary to consider that the requirements differs fundamentally. Therefore, combining high pressures and high temperatures in microsystems results in great challenges, which requires trade-offs and compromises. Here, steel and HTCC based microsystems may prove interesting alternatives for future high performance microsystems.
  •  
14.
  • Lekholm, Ville, 1976-, et al. (författare)
  • Ceramic cold gas microthruster with integrated flow sensor
  • 2011
  • Ingår i: PowerMEMS 2011 Technical digest. - Daejeon, Republic of Korea : Cell Bench Research Center, KAIST. - 9788996759102 ; , s. 167-170
  • Konferensbidrag (refereegranskat)abstract
    • For aggressive environments, the material properties of silicon become a limitation. Macroscopically, ceramics are as common for high-temperature applications as is silicon in miniaturized systems, but this group of materials has been little exploited for MEMS components. This paper describes the  design, manufacturing and characterization of a ceramic, heated cold-gas microthruster with integrated flow sensor, using HTCC processing and silicon tools. The calorimetric flow sensor is integrated in the structure, and heaters are embedded in the stagnation chamber of the nozzle. The heater was shown to improve the efficiency of the thruster, as confirmed by measurements of the flow rate. Flow rate changes were seen as changes in resistance of the fabricated flow sensor. The choice of yttria stabilized zirconia as material for the components make them robust and capable of withstanding  very high temperatures. Samples have been shown  capable of achieving temperatures locally exceeding 1000ºC.
  •  
15.
  • Lekholm, Ville, 1976-, et al. (författare)
  • Ceramic microcomponents for high-temperature fluidics
  • 2010
  • Ingår i: Technical DigestPowerMEMS 2010, The 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Leuven, Belgium, December 1-3, 2010. - 9789073802889 ; , s. 291-294
  • Konferensbidrag (refereegranskat)abstract
    • For aggressive environments, the material properties of silicon become a limitation. Macroscopically, ceramics are as abundant for high-temperature applications as is silicon in miniaturized systems, but this group of materials has been little exploited for MEMS components. A major reason is the lack of means for high-resolution structuring. This paper describes the application of silicon-based manufacturing processes in the fabrication of ceramic yet truly micromechanical structures and devices for very high-temperature applications, and demonstrates the technique’s implementation in, and significance for, high-temperature microfluidics. Embossing of structures down to 2 µm wide is demonstrated, as well as deep embossing (50 µm), punching through 15 µm tape, and lamination of structured layers. The resulting samples survive temperatures of 1400ºC.
  •  
16.
  • Lekholm, Ville, 1976-, et al. (författare)
  • High-temperature zirconia microthruster with integrated flow sensor
  • 2013
  • Ingår i: Journal of Micromechanics and Microengineering. - : IOP Publishing. - 0960-1317 .- 1361-6439. ; 23:5, s. 055004-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the design, fabrication and characterization of a ceramic, heated cold-gas microthruster device made with silicon tools and high temperature co-fired ceramic processing. The device contains two opposing thrusters, each with an integrated calorimetric propellant flow sensor and a heater in the stagnation chamber of the nozzle. The exhaust from a thruster was photographed using schlieren imaging to study its behavior and search for leaks. The heater elements were tested under a cyclic thermal load and to the maximum power before failure. The nozzle heater was shown to improve the efficiency of the thruster by 6.9%, from a specific impulse of 66 to 71 s, as calculated from a decrease of the flow rate through the nozzle of 13%, from 44.9 to 39.2 sccm. The sensitivity of the integrated flow sensor was measured to 0.15 m Omega sccm(-1) in the region of 0-15 sccm and to 0.04 m Omega sccm(-1) above 20 sccm, with a zero-flow sensitivity of 0.27 m Omega sccm(-1). The choice of yttria-stabilized zirconia as a material for the devices makes them robust and capable of surviving temperatures locally exceeding 1000 degrees C.
  •  
17.
  • Lindberg, Fredrik, et al. (författare)
  • Hydroxylapatite growth on single-crystal rutile substrates
  • 2008
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 29:23, s. 3317-3323
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium is widely used as an implant material. In addition to the bulk properties of titanium, the biological response is to a large degree controlled via the surface. The native amorphous titanium oxide that forms spontaneously on the surface gives a very good biological response. Lately it has been shown that crystalline titanium oxides (rutile and anatase) have in vitro bioactive properties. In addition to its potential for new materials development, this finding also opens up for the possibility of studying the mechanisms of bioactivity on materials with strictly controlled surfaces. In this paper the mechanisms behind the in vitro bioactivity are studied, using rutile single crystals. Three single-crystal rutile substrates: (100), (110), and (001), and a polycrystalline rutile substrate obtained by physical vapour deposition were soaked in a phosphate buffered saline solution for up to 4 weeks. The hydroxylapatite films that formed were analysed by X-ray diffraction, scanning electron microscopy, focused ion beam, and transmission electron microscopy. The hydroxylapatite grew faster on the (001) surface than on the other two. It was also found that on the (001) surface the direction of fast growth in hydroxylapatite was aligned parallel to the surface. This is in contrast to the (110) rutile surface where the fast growth of the hydroxylapatite crystal was directed outwards from the surface. The (100) face had poor adhesion at the interface. The orientations of the precipitated crystallites play a significant role in the faster coverage of the (001) rutile face. Based on the experimental results, a model for the hydroxylapatite growth process is given.
  •  
18.
  • Persson, Anders, et al. (författare)
  • Etch-stop technique for patterning of tunnel junctions for a magnetic field sensor
  • 2011
  • Ingår i: Journal of Micromechanics and Microengineering. - : IOP Publishing. - 0960-1317 .- 1361-6439. ; 21:4, s. 045014-045022
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-dependent tunnelling devices, e. g. magnetic random access memories and highly sensitive tunnelling magnetoresistance (TMR) sensors, often consist of a large number of magnetic tunnel junctions (MTJs) of uniform quality over the whole device. The uniformity and yield of the fabrication of such a device are therefore very important. A major source of yield loss is the short-circuiting of junctions by redeposition of etch residues. This can be prevented by terminating of the etch in the typically 1 nm thick tunnelling barrier. Here, electron spectroscopy for chemical analysis for monitoring the etching semi-continuously is proposed. The fabrication scheme employs Ar ion milling for etching the MTJs, and photoelectron spectroscopy for analysing the composition of the etched surface in situ. Junctions etched either to or through the barrier were used for this. The quality of the etch stop was investigated using transmission electron microscopy (TEM), and it was confirmed that the etch could be stopped in the MgO barrier. The TEM imaging also showed clear signs of redeposition. Such redeposition was attributed to being partly caused by the reduction of the TMR ratio of the junctions etched through the barrier, which was only 15% as compared with 150% for junctions etched to the barrier. Also, the latter junctions exhibited 2.7 times less noise in the low-frequency regime, resulting in a 27 times improvement of the signal-to-noise ratio with the etch stop. The barrier also proved effective in protecting the bottom contact from oxidation during the capping and contacting of the junctions.
  •  
19.
  • Persson, Anders, 1982-, et al. (författare)
  • Ga Implantation in a MgO-based Magnetic Tunnel Junction With Co60Fe20B20 Layers
  • 2011
  • Ingår i: IEEE transactions on magnetics. - 0018-9464 .- 1941-0069. ; 47:1, s. 151-155
  • Tidskriftsartikel (refereegranskat)abstract
    • A Co60Fe20B20-based tunneling magnetoresistance multilayer stack with an MgO barrier has been exposed to 30 keV Ga ions at doses corresponding to ion etching and metal deposition in a focused ion beam (FIB) instrument, to study the applicability of these processes to magnetic tunnel junction (MTJ) fabrication. MTJs were fabricated and irradiated to investigate how the exposures affected their coercivity and magnetoresistance. Elemental depth profiles, acquired using electron spectroscopy for chemical analysis, showed that Ga gathered in and around the two Co60Fe20B20 layers. Correlated with the results of the magnetic measurements, this Ga presence was found to cause a reduction of magnetoresistance and an increase in coercivity. Quantitatively, a dose of 1014 Ga+cm-2 reduced the magnetoresistance by 60%, whereas a dose of 1015 Ga+cm-2 reduced the magnetoresistance by 67% and also increased the coercivity by 2 mT and changed the dipole coupling between the sensing and the pinning layers by 1.6 mT. The latter was attributed to an imbalance in the synthetic antiferromagnetic structure, where the stack's Ru spacer served as an implantation barrier. The magnetoresistance was lost at a dose of 1016 Ga+cm-2. Annealing reduced the content of Ga around the magnetic layers but also caused diffusion of Cu from one of the layers in the stack. Apart from the observation and explanation of implantation damages in the multilayer, this work concludes on the applicability of FIB processes for prototyping of MTJs.
  •  
20.
  • Seger, Johan, et al. (författare)
  • Influence of a Si layer intercalated between Si0.75Ge0.25 and Ni on the behavior of the resulting NiSi1-uGeu film
  • 2004
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 96:12, s. 7179-7182
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of Ni films with epitaxially grown Si-capped and not capped Si0.75Ge0.25 layers on Si(100) at 500degreesC leads to the formation of NiSi1-uGeu films as a bilayer NiSi on NiSi0.75Ge0.25 with a rather clear compositional boundary. In the absence of a Si cap at the surface, NiSi0.75Ge0.25 is formed on NiSi. Epitaxy of NiSi on NiSi0.75Ge0.25, and vice versa, occurs across the compositional boundary. The crystallographic orientation of the NiSi1-uGeu films is strongly affected by the initial layer thicknesses and the layer sequence. Without a Si cap, the NiSi1-uGeu films show an increased fiber texture with increasing Si0.75Ge0.25 thickness. In the presence of a Si cap, on the other hand, the texture collapses into a random orientation already for thin caps. Rapid diffusion of Ge at 500degreesC results in the presence of some Ge at the NiSi/Si interface for a NiSi0.75Ge0.25/NiSi/Si structure. This diffusion is accompanied by an increased roughness at the NiSi/Si interface, as compared to the quite flat NiSi/Si interface in the absence of Ge. For thin Si caps, severe interface roughening with thick NiSi0.75Ge0.25 grains protruding deeply into the remaining Si0.75Ge0.25 is observed.
  •  
21.
  •  
22.
  •  
23.
  • Seger, Johan, et al. (författare)
  • Morphological instability of NiSi1-uGeu on single-crystal and polycrystalline Si1-xGex
  • 2004
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 96:4, s. 1919-1928
  • Tidskriftsartikel (refereegranskat)abstract
    • The morphological stability of NiSi1-uGeu ternary alloy films formed by reacting Ni with single-crystal (sc) and polycrystalline (poly) Si1-xGeu is studied (u can be different from x). The agglomeration of NiSi1-uGeu films on Si0.7Ge0.3 occurs at 550degreesC after rapid thermal processing for 30 s, independently of the crystallinity of the Si1-xGeu. This behavior distinctly different from NiSi: NiSi films on poly-Si display a poorer morphological stability and degrade at lower temperatures than NiSi on sc-Si. On strained Si1-xGex, the presence of Ge simultaneously gives rise to two effects of different origin: mechanical and thermodynamic. The main driving forces behind the agglomeration of NiSi1-uGeu on sc-Si1-xGex are found to be the stored strain energy in the Si1-xGex and the larger (absolute) free energy of formation of NiSi compared to NiGe. The latter constitutes the principal driving force behind the agglomeration of NiSi1-uGeu on poly-Si1-xGex and is not affected by the degree of crystallinity of Si1-xGex. The total free-energy change also includes terms corresponding to the entropy of mixing of Si and Ge in both Si1-xGex and NiSi1-uGeu. Calculations show that the strain energy and the total free-energy change can be 5-7 times (with 30 at.% Ge) the surface/interface and grain-boundary energies in a NiSi film or the grain-boundary energy in an underlying poly-Si. These latter energies are responsible for the agglomeration of NiSi on sc- and poly-Si. The agglomeration takes place primarily via the interdiffusion of Si and Ge between Si1-xGex and NiSi1-uGeu. A structure likely to improve the stability of NiSi1-uGeu/Si1-xGex is discussed.
  •  
24.
  • Svensson, Stefan, 1985-, et al. (författare)
  • ESEM as a Tool for Studying High Temperature Electronics
  • 2011
  • Ingår i: IMAPS High Temperature Electronics Network (HiTEN 2011), July 18-20, 2011 ,Oxford, UK.
  • Konferensbidrag (refereegranskat)abstract
    • Researchers studying materials and processes at high temperatures are often restricted to do evaluation afterwards and at room temperature using e.g. scanning electron microscopy (SEM). Limited by high vacuum, outgassing and non-conducting samples are difficult to study with SEM. For such samples, environmental scanning electron microscope (ESEM) is an alternative that is particularly suited also for high temperature in-situ studies. The electron detector in the ESEM make use of otherwise unwanted scattering of electrons as an amplifier of the signal, and by using differential pumping, it is possible to introduce several mbar of either oxygen, water vapor, or a gas of choice into the sample chamber while still maintaining the high-vacuum in the electron column. The auxiliary gas neutralizes surface charges built up by the electron beam, which makes it possible to image non-conductive and outgassing samples, thus making it possible to study e.g. polymeric and high temperature materials. Our ESEM, FEI XL30, have a heating stage making it possible to reach temperatures up to 1500°C. Equipped with electrical feed- throughs, the instrument can be used to study high temperature phenomena on electrically activated components.ESEM is an instrument that has found its use for biological and organic samples. However, less work has been done using it for high temperature processes. Here, we show real-time imaging of the sintering of dielectric and Ag thick-film prints on AlN substrates. The use of the electrical feed-throughs to activate electrical components and study them at high temperatures is also demonstrated. ESEM is a versatile tool for high temperature studies and in-situ analysis of electrical components, solder processes and different die-attach materials. 
  •  
25.
  • Wang, Zhaohui, et al. (författare)
  • Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications
  • 2014
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 6:21, s. 13068-13075
  • Tidskriftsartikel (refereegranskat)abstract
    • It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g(-1), corresponding to specific electrode capacitances of up to ∼185 F g(-1) based on the weight of the electrode, and 5.5 F cm(-2) at a current density of 2 mA cm(-2). After 3000 charge/discharge cycles at 30 mA cm(-2), the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25
Typ av publikation
tidskriftsartikel (19)
konferensbidrag (3)
doktorsavhandling (3)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Smith, Ulf (11)
Zhang, Shi-Li (6)
Zhang, Zhi-Bin (3)
Sundström, Villy (2)
Chábera, Pavel (2)
Engqvist, Håkan (2)
visa fler...
Persson, Petter (2)
Thomsen, Peter, 1953 (2)
Persson, Anders (2)
Zhang, Zhibin (2)
Hjort, Klas (2)
Prakash, Om (2)
Overvad, Kim (1)
Zhang, Peng (1)
Lidin, Sven (1)
Radamson, Henry H. (1)
Ericsson, Tore (1)
Larsson, Sune (1)
Johansson, C. (1)
Styring, Stenbjörn (1)
Viikari, Jorma (1)
Nordestgaard, Borge ... (1)
Lomoth, Reiner (1)
Huang, Ping (1)
Strømme, Maria, 1970 ... (1)
Mozaffarian, Dariush (1)
Willett, Walter C. (1)
Johansson, Ingegerd (1)
Ericson, Ulrika (1)
Hernandez, Dena (1)
North, Kari E. (1)
Franks, Paul W. (1)
Tjonneland, Anne (1)
Schulz, Christina Al ... (1)
Linneberg, Allan (1)
Pedersen, Oluf (1)
Orho-Melander, Marju (1)
Hansen, Torben (1)
Renström, Frida (1)
Ridker, Paul M. (1)
Hu, Frank B. (1)
Chasman, Daniel I. (1)
Chu, Audrey Y (1)
Rose, Lynda M (1)
Qi, Lu (1)
Smith, Caren E. (1)
Häggström, Lennart (1)
Radamson, Henry (1)
Rotter, Jerome I. (1)
Palmquist, Anders, 1 ... (1)
visa färre...
Lärosäte
Uppsala universitet (21)
Göteborgs universitet (2)
Kungliga Tekniska Högskolan (2)
Lunds universitet (2)
Umeå universitet (1)
Språk
Engelska (21)
Odefinierat språk (4)
Forskningsämne (UKÄ/SCB)
Teknik (9)
Naturvetenskap (4)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy