SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ermilova Inna 1983) "

Sökning: WFRF:(Ermilova Inna 1983)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Kajsa, 1996, et al. (författare)
  • New insights into the protein stabilizing effects of trehalose by comparing with sucrose
  • 2023
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 25:32, s. 21215-21226
  • Tidskriftsartikel (refereegranskat)abstract
    • Disaccharides are well known to be efficient stabilizers of proteins, for example in the case of lyophilization or cryopreservation. However, although all disaccharides seem to exhibit bioprotective and stabilizing properties, it is clear that trehalose is generally superior compared to other disaccharides. The aim of this study was to understand this by comparing how the structural and dynamical properties of aqueous trehalose and sucrose solutions influence the protein myoglobin (Mb). The structural studies were based on neutron and X-ray diffraction in combination with empirical potential structure refinement (EPSR) modeling, whereas the dynamical studies were based on quasielastic neutron scattering (QENS) and molecular dynamics (MD) simulations. The results show that the overall differences in the structure and dynamics of the two systems are small, but nevertheless there are some important differences which may explain the superior stabilizing effects of trehalose. It was found that in both systems the protein is preferentially hydrated by water, but that this effect is more pronounced for trehalose, i.e. trehalose forms less hydrogen bonds to the protein surface than sucrose. Furthermore, the rotational motion around dihedrals between the two glucose rings of trehalose is slower than in the case of the dihedrals between the glucose and fructose rings of sucrose. This leads to a less perturbed protein structure in the case of trehalose. The observations indicate that an aqueous environment closest to the protein molecules is beneficial for an efficient bioprotective solution.
  •  
2.
  • Blomgren, Fredrik, et al. (författare)
  • Two statins and cromolyn as possible drugs against the cytotoxicity of A beta(31-35) and A beta(25-35) peptides: a comparative study by advanced computer simulation methods
  • 2022
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 12:21, s. 13352-13366
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, possible effective mechanisms of cromolyn, atorvastatin and lovastatin on the cytotoxicity of A beta(31-35) and A beta(25-35) peptides were investigated by classical molecular dynamics and well-tempered metadynamics simulations. The results demonstrate that all the drugs affect the behavior of the peptides, such as their ability to aggregate, and alter their secondary structures and their affinity to a particular drug. Our findings from the computed properties suggest that the best drug candidate is lovastatin. This medicine inhibits peptide aggregation, adsorbs the peptides on the surface of the drug clusters, changes the secondary structure and binds to MET35, which has been seen as the reason for the toxicity of the studied peptide sequences. Moreover, lovastatin is the drug which previously has demonstrated the strongest ability to penetrate the blood-brain barrier and makes lovastatin the most promising medicine among the three investigated drugs. Atorvastatin is also seen as a potential candidate if its penetration through the blood-brain barrier could be improved. Otherwise, its properties are even better than the ones demonstrated by lovastatin. Cromolyn appears to be less interesting as an anti-aggregant from the computational data, in comparison to the two statins.
  •  
3.
  • Chrobak, Wojciech, et al. (författare)
  • Component of cannabis, cannabidiol, as a possible drug against the cytotoxicity of Aβ(31-35) and Aβ(25-35) peptides: An investigation by molecular dynamics and well-tempered metadynamics simulations
  • 2021
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 12:4, s. 660-674
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work cannabidiol (CBD) was investigated as a possible drug against the cytotoxicity of Aβ(31-35) and Aβ(25-35) peptides with the help of atomistic molecular dynamics (MD) and well-tempered metadynamics simulations. Four interrelated mechanisms of possible actions of CBD are proposed from our computations. This implies that one mechanism can be a cause or/and a consequence of another. CBD is able to decrease the aggregation of peptides at certain concentrations of compounds in water. This particular action is more prominent for Aβ(25-35), since originally Aβ(31-35) did not exhibit aggregation properties in aqueous solutions. Interactions of CBD with the peptides affect secondary structures of the latter ones. Clusters of CBD are seen as possible adsorbents of Aβ(31-35) and Aβ(25-35) since peptides are tending to aggregate around them. And last but not least, CBD exhibits binding to MET35. All four mechanisms of actions can possibly inhibit the Aβ-cytotoxicity as discussed in this paper. Moreover, the amount of water also played a role in peptide clustering: with a growing concentration of peptides in water without a drug, the aggregation of both Aβ(31-35) and Aβ(25-35) increased. The number of hydrogen bonds between peptides and water was significantly higher for simulations with Aβ(25-35) at the higher concentration of peptides, while for Aβ(31-35) that difference was rather insignificant. The presence of CBD did not substantially affect the number of hydrogen bonds in the simulated systems.
  •  
4.
  • Ermilova, Inna, 1983, et al. (författare)
  • DOPC versus DOPE as a helper lipid for gene-therapies: molecular dynamics simulations with DLin-MC3-DMA
  • 2020
  • Ingår i: Physical Chemistry Chemical Physics. - 1463-9084 .- 1463-9076. ; 22:48, s. 28256-28268
  • Tidskriftsartikel (refereegranskat)abstract
    • Ionizable lipids are important compounds of modern therapeutic lipid nano-particles (LNPs). One of the most promising ionizable lipids (or amine lipids) is DLin-MC3-DMA. Depending on their pharmaceutical application these LNPs can also contain various helper lipids, such as phospho- and pegylated lipids, cholesterol and nucleic acids as a cargo. Due to their complex compositions the structures of these therapeutics have not been refined properly. Therefore, the role of each lipid in the pharmacological properties of LNPs has not been determined. In this work an atomistic model for the neutral form of DLin-MC3-DMA was derived and all-atom molecular dynamics (MD) simulations were carried out in order to investigate the effect of the phospholipid headgroup on the possible properties of the shell-membranes of LNPs. Bilayers containing either DOPC or DOPE lipids at two different ratios of DLin-MC3-DMA (5 mol% and 15 mol%) were constructed and simulated at neutral pH 7.4. The results from the analysis of MD trajectories revealed that DOPE lipid headgroups associated strongly with lipid tails and carbonyl oxygens of DLin-MC3-DMA, while for DOPC lipid headgroups no significant associations were observed. Furthermore, the strong associations between DOPE and DLin-MC3-DMA result in the positioning of DLin-MC3-DMA at the surface of the membrane. Such an interplay between the lipids slows down the lateral diffusion of all simulated bilayers, where a more dramatic decrease of the diffusion rate is observed in membranes with DOPE. This can explain the low water penetration of lipid bilayers with phosphatidylethanolamines and, probably, can relate to the bad transfection properties of LNPs with DOPE and DLin-MC3-DMA.
  •  
5.
  • Ermilova, Inna, 1983, et al. (författare)
  • Ionizable lipids penetrate phospholipid bilayers with high phase transition temperatures: perspectives from free energy calculations
  • 2023
  • Ingår i: Chemistry and Physics of Lipids. - : Elsevier BV. - 0009-3084 .- 1873-2941. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficacies of modern gene-therapies strongly depend on their contents. At the same time the most potent formulations might not contain the best compounds. In this work we investigated the effect of phospholipids and their saturation on the binding ability of (6Z,9Z,28Z,31Z)-heptatriacont-6,9,28,31-tetraene-19-yl 4-(dimethylamino) butanoate (DLin-MC3-DMA) to model membranes at the neutral pH. We discovered that DLin-MC3-DMA has affinity to the most saturated monocomponent lipid bilayer 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and an aversion to the unsaturated one 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The preference to a certain membrane was also well-correlated to the phase transition temperatures of phospholipid bilayers, and to their structural and dynamical properties. Additionally, in the case of the presence of DLin-MC3-DMA in the membrane with DOPC the ionizable lipid penetrated it, which indicates possible synergistic effects. Comparisons with other ionizable lipids were performed using a model lipid bilayer of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC). Particularly, the lipids heptadecan-9-yl 8-[2-hydroxyethyl-(6-oxo-6-undecoxyhexyl)amino]octanoate (SM-102) and [(4-hydroxybutyl) azanediyl] di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315) from modern mRNA-vaccines against COVID-19 were investigated and force fields parameters were derived for those new lipids. It was discovered that ALC-0315 binds strongest to the membrane, while DLin-MC3-DMA is not able to reside in the bilayer center. The ability to penetrate the membrane POPC by SM-102 and ALC-0315 can be related to their saturation, comparing to DLin-MC3-DMA.
  •  
6.
  • Ermilova, Inna, 1983- (författare)
  • Modeling of biomembranes: from computational toxicology to simulations of neurodegenerative diseases
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • It was known from the middle of the last century that a cell-membrane is a lipid bilayer. Since that time a large number of experimental studies has been done in order to see how a certain molecule can penetrate through a membrane. Due to the complexity of laboratory experiments computational chemistry became a convenient tool for investigations involving this process. In a real life a compound has to pass through several membranes of different chemical composition before reaching the actual target. Such a diversity in constitution gives a various selectivity to cell-membranes: some molecules will penetrate through them and others will not. That is why the development and a choice of suitable models for lipid bilayers are important steps in such a research. In this thesis new all-atomistic models for polyunsaturated phospholipids in cis conformations have been derived and added to the SLipids force field. After a successful force field validation, the new lipid models were used in molecular dynamics and well-tempered metadynamics simulations of several problems, such as toxicity of hydroxylated polybrominated diphenyl ethers (OH-PBDE), behavior of cholesterol in various membranes, an aggregation of amyloid-β (Aβ) peptides. The significance of the presence of lipid unsaturation has been demonstrated by all computations. 2’-OH-BDE68 (ortho) showed the affinity to saturated lipid bilayer, but had more conformational variations in the center of the unsaturated membrane. Cholesterol did not exhibit the preference to polynsaturated lipid bilayers from free energy calculations, but the diversity in orientations of this molecule, depending on its locations was observed. The behavior of Aβ peptides was dependent on membrane saturation as well. The insertion of Aβ peptides was detected in lipid bilayers containing higher amounts of polyunsaturated phospholipids, while in systems with more saturated membranes amyloids aggregated on membrane surfaces. Moreover, a comparison of simulations for quadro- and mono-component lipid bilayers showed that the membrane built of 18:0-22:6 PC can serve as a good model for the ’healthy’ tissue of a human brain. Also the lipid bilayer built of 14:0-14:0 PC exhibited similar features as the quadro-lipid membrane representing the brain tissue affected by Alzheimer’s disease. Good agreement of some computational results with available experimental findings demonstrated the applicability of computer simulations to real life problems.
  •  
7.
  • Ermilova, Inna, 1983-, et al. (författare)
  • Modelling of interactions between Aβ(25-35) peptide and phospholipid bilayers : effects of cholesterol and lipid saturation
  • 2020
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 10:7, s. 3902-3915
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation of amyloid beta (Aβ) peptides in neuronal membranes is a known promoter of Alzheimer’s disease. To gain insight into the molecular details of Aβ peptide aggregation and its effect on model neuronal membranes, we carried out molecular dynamics simulations of the Aβ(25–35) fragment of the amyloid precursor protein in phospholipid bilayers composed of either fully saturated or highly unsaturated lipids, in the presence or absence of cholesterol. It was found that the peptide does not penetrate through any of the considered membranes, but can reside in the headgroup region and upper part of the lipid tails showing a clear preference to a polyunsaturated cholesterol-free membrane. Due to the ordering and condensing effect upon addition of cholesterol, membranes become more rigid facilitating peptide aggregation on the surface. Except for the case of the cholesterol-free saturated lipid bilayer, the peptides have a small effect on the membrane structure and ordering. It was also found that the most “active” amino-acid for peptide–lipid and peptide–cholesterol interaction is methionine-35, followed by asparagine-27 and serine-26, which form hydrogen bonds between peptides and polar atoms of lipid headgroups. These amino acids are also primarily responsible for peptide aggregation. This work will be relevant for designing strategies to develop drugs to combat Alzheimer’s disease.
  •  
8.
  • Gilbert, Jennifer, et al. (författare)
  • Effect of encapsulated protein on the dynamics of lipid sponge phase: a neutron spin echo and molecular dynamics simulation study
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid membranes are highly mobile systems with hierarchical, time and length scale dependent, collective motions including thickness fluctuations, undulations, and topological membrane changes, which play an important role in membrane interactions. In this work we have characterised the effect of encapsulating two industrially important enzymes, β-galactosidase and aspartic protease, in lipid sponge phase nanoparticles on the dynamics of the lipid membrane using neutron spin echo (NSE) spectroscopy and molecular dynamics (MD) simulations. From NSE, reduced membrane dynamics were observed upon enzyme encapsulation, which were dependent on the enzyme concentration and type. By fitting the intermediate scattering functions (ISFs) with a modified Zilman and Granek model including nanoparticle diffusion, an increase in membrane bending rigidity was observed, with a larger effect for β-galactosidase than aspartic protease at the same concentration. MD simulations for the system with and without aspartic protease showed that the lipids relax more slowly in the system with protein due to the replacement of the lipid carbonyl-water hydrogen bonds with lipid-protein hydrogen bonds. This indicates that the most likely cause of the increase in membrane rigidity observed in the NSE measurements was dehydration of the lipid head groups. The dynamics of the protein itself were also studied, which showed a stable secondary structure of protein over the simulation, indicating no unfolding events occurred.
  •  
9.
  •  
10.
  • Gilbert, Jennifer, et al. (författare)
  • On the interactions between RNA and titrateable lipid layers: implications for RNA delivery with lipid nanoparticles
  • 2023
  • Ingår i: Nanoscale. - 2040-3372 .- 2040-3364. ; 16:2, s. 777-794
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterising the interaction between cationic ionisable lipids (CIL) and nucleic acids (NAs) is key to understanding the process of RNA lipid nanoparticle (LNP) formation and release of NAs from LNPs. Here, we have used different surface techniques to reveal the effect of pH and NA type on the interaction with a model system of DOPC and the CIL DLin-MC3-DMA (MC3). At only 5% MC3, differences in the structure and dynamics of the lipid layer were observed. Both pH and %MC3 were shown to affect the absorption behaviour of erythropoietin mRNA, polyadenylic acid (polyA) and polyuridylic acid (polyU). The adsorbed amount of all studied NAs was found to increase with decreasing pH and increasing %MC3 but with different effects on the lipid layer, which could be linked to the NA secondary structure. For polyA at pH 6, adsorption to the surface of the layer was observed, whereas for other conditions and NAs, penetration of the NA into the layer resulted in the formation of a multilayer structure. By comparison to simulations excluding the secondary structure, differences in adsorption behaviours between polyA and polyU could be observed, indicating that the NA's secondary structure also affected the MC3-NA interactions.
  •  
11.
  • Nasedkin, Alexandr, 1987, et al. (författare)
  • Atomistic molecular dynamics simulations of tubulin heterodimers explain the motion of a microtubule
  • 2021
  • Ingår i: European Biophysics Journal. - : Springer Science and Business Media LLC. - 1432-1017 .- 0175-7571. ; 50:7, s. 927-940
  • Tidskriftsartikel (refereegranskat)abstract
    • Microtubules are essential parts of the cytoskeleton that are built by polymerization of tubulin heterodimers into a hollow tube. Regardless that their structures and functions have been comprehensively investigated in a modern soft matter, it is unclear how properties of tubulin heterodimer influence and promote the self-assembly. A detailed knowledge of such structural mechanisms would be helpful in drug design against neurodegenerative diseases, cancer, diabetes etc. In this work atomistic molecular dynamics simulations were used to investigate the fundamental dynamics of tubulin heterodimers in a sheet and a short microtubule utilizing well-equilibrated structures. The breathing motions of the tubulin heterodimers during assembly show that the movement at the lateral interface between heterodimers (wobbling) dominates in the lattice. The simulations of the protofilament curvature agrees well with recently published experimental data, showing curved protofilaments at polymerization of the microtubule plus end. The tubulin heterodimers exposed at the microtubule minus end were less curved and displayed altered interactions at the site of sheet closure around the outmost heterodimers, which may slow heterodimer binding and polymerization, providing a potential explanation for the limited dynamics observed at the minus end.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy