SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Everts Vincent) "

Sökning: WFRF:(Everts Vincent)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bronckers, Antonius L. J. J., et al. (författare)
  • Murine ameloblasts are immunonegative for Tcirg1, the v-H-ATPase subunit essential for the osteoclast plasma proton pump
  • 2012
  • Ingår i: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 50:4, s. 901-908
  • Tidskriftsartikel (refereegranskat)abstract
    • Maturation stage ameloblasts of rodents express vacuolar type-H-ATPase in the ruffled border of their plasma membrane in contact with forming dental enamel, similar to osteoclasts that resorb bone. It has been proposed that in ameloblasts this v-H-ATPase acts as proton pump to acidify the enamel space, required to complete enamel mineralization. To examine whether this v-H-ATPase in mouse ameloblasts is a proton pump, we determined whether these cells express the lysosomal, T-cell, immune regulator I (Tcirg1, v-H-Atp6v(0)a(3)), which is an essential part of the plasma membrane proton pump that is present in osteoclasts. Mutation of this subunit in Tcirg1 null (or oc/oc) mice leads to severe osteopetrosis. No immunohistochemically detectable Tcirg1 was seen in mouse maturation stage ameloblasts. Strong positive staining in secretory and maturation stage ameloblasts however was found for another subunit of v-H-ATPase, subunit b, brain isoform (v-H-Atp6v(1)b(2)). Mouse osteoclasts and renal tubular epithelium stained strongly for both Tcirg1 and v-H-Atp6v(1)b(2). In Tcirg1 null mice osteoclasts and renal epithelium were negative for Tcirg1 but remained positive for v-H-Atp6v(1)b(2). The bone in these mutant mice was osteopetrotic, tooth eruption was inhibited or delayed, and teeth were often morphologically disfigured. However, enamel formation in these mutant mice was normal, ameloblasts structurally unaffected and the mineral content of enamel similar to that of wild type mice. We concluded that Tcirg1, which is essential for osteoclasts to pump protons into the bone, is not appreciably expressed in maturation stage mouse ameloblasts. Our data suggest that the reported v-H-ATPase in maturation stage ameloblasts is not the typical osteoclast-type plasma membrane associated proton pump which acidifies the extracellular space, but rather a v-H-ATPase potentially involved in intracellular acidification. (C) 2012 Elsevier Inc. All rights reserved.
  •  
2.
  • Flores Bjurström, Carmen, et al. (författare)
  • Nonablative neonatal bone marrow transplantation rapidly reverses severe murine osteopetrosis despite low level engraftment and lack of selective expansion of the osteoclastic lineage.
  • 2010
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 25:9, s. 2069-2077
  • Tidskriftsartikel (refereegranskat)abstract
    • Infantile malignant osteopetrosis (IMO) is caused by lack of functional osteoclasts leading to skeletal abnormalities, blindness due to compression of the optic nerves, bone marrow (BM) failure and early death. In most patients TCIRG1, a proton pump subunit essential for bone resorption, is mutated. Oc/oc mice represent a model for IMO due to a deletion in Tcirg1 and die around 4 weeks. To determine if hematopoietic stem cell transplantation without prior conditioning can reverse osteopetrosis, neonatal mice were transplanted iv with lineage depleted BM cells. More than 85% of oc/oc mice transplanted with 5 x 10(6) cells survived long term with an engraftment of 3-5% in peripheral blood (PB). At 3 w engraftment in the BM was 1-2% but the cellularity had increased 60-fold compared to non-treated oc/oc and RANKL and M-CSF expression in the BM was normalized. Histopathology and micro-CT revealed almost complete reversal of osteopetrosis after 4 weeks. In vitro studies showed that bone resorption by osteoclasts from transplanted oc/oc mice was 14% of transplanted controls and immunofluorescence microscopy revealed that resorption was mainly associated with osteoclasts of donor origin. Lineage analysis of BM, PB and spleen did not provide any evidence for selective recruitment of cells to the osteoclastic lineage. The vision was also preserved in transplanted oc/oc mice as determined by a visual tracking drum test. In summary, nonablative neonatal transplantation leading to engraftment of only a small fraction of normal cells rapidly reverses severe osteopetrosis in the oc/oc mouse model. (c) 2010 American Society for Bone and Mineral Research.
  •  
3.
  • Henriksen, Kim, et al. (författare)
  • Dissociation of Bone Resorption and Bone Formation in Adult Mice with a Non-Functional V-ATPase in Osteoclasts Leads to Increased Bone Strength
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteopetrosis caused by defective acid secretion by the osteoclast, is characterized by defective bone resorption, increased osteoclast numbers, while bone formation is normal or increased. In contrast the bones are of poor quality, despite this uncoupling of formation from resorption. To shed light on the effect of uncoupling in adult mice with respect to bone strength, we transplanted irradiated three-month old normal mice with hematopoietic stem cells from control or oc/oc mice, which have defective acid secretion, and followed them for 12 to 28 weeks. Engraftment levels were assessed by flow cytometry of peripheral blood. Serum samples were collected every six weeks for measurement of bone turnover markers. At termination bones were collected for mu CT and mechanical testing. An engraftment level of 98% was obtained. From week 6 until termination bone resorption was significantly reduced, while the osteoclast number was increased when comparing oc/oc to controls. Bone formation was elevated at week 6, normalized at week 12, and reduced onwards. mu CT and mechanical analyses of femurs and vertebrae showed increased bone volume and bone strength of cortical and trabecular bone. In conclusion, these data show that attenuation of acid secretion in adult mice leads to uncoupling and improves bone strength.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy