SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ewart Lorna) "

Sökning: WFRF:(Ewart Lorna)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fabre, Kristin M., et al. (författare)
  • Utilizing microphysiological systems and induced pluripotent stem cells for disease modeling : a case study for blood brain barrier research in a pharmaceutical setting
  • 2019
  • Ingår i: Advanced Drug Delivery Reviews. - : Elsevier. - 0169-409X .- 1872-8294. ; 140, s. 129-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Microphysiological systems (MPS) may be able to provide the pharmaceutical industry models that can reflect human physiological responses to improve drug discovery and translational outcomes. With lack of efficacy being the primary cause for drug attrition, developing MPS disease models would help researchers identify novel targets, study mechanisms in more physiologically-relevant depth, screen for novel biomarkers and test/optimize various therapeutics (small molecules, nanoparticles and biologics). Furthermore, with advances in inducible pluripotent stem cell technology (iPSC), pharmaceutical companies can access cells from patients to help recreate specific disease phenotypes in MPS platforms. Combining iPSC and MPS technologies will contribute to our understanding of the complexities of neurodegenerative diseases and of the blood brain barrier (BBB) leading to development of enhanced therapeutics. © 2018
  •  
2.
  • Jang, Kyung-Jin, et al. (författare)
  • Reproducing human and cross-species drug toxicities using a Liver-Chip
  • 2019
  • Ingår i: Science Translational Medicine. - : AMER ASSOC ADVANCEMENT SCIENCE. - 1946-6234 .- 1946-6242. ; 11:517
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.
  •  
3.
  • Reyes, Darwin R., et al. (författare)
  • From animal testing to in vitro systems: advancing standardization in microphysiological systems
  • 2024
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 24:5, s. 1076-1087
  • Forskningsöversikt (refereegranskat)abstract
    • Limitations with cell cultures and experimental animal-based studies have had the scientific and industrial communities searching for new approaches that can provide reliable human models for applications such as drug development, toxicological assessment, and in vitro pre-clinical evaluation. This has resulted in the development of microfluidic-based cultures that may better represent organs and organ systems in vivo than conventional monolayer cell cultures. Although there is considerable interest from industry and regulatory bodies in this technology, several challenges need to be addressed for it to reach its full potential. Among those is a lack of guidelines and standards. Therefore, a multidisciplinary team of stakeholders was formed, with members from the US Food and Drug Administration (FDA), the National Institute of Standards and Technology (NIST), European Union, academia, and industry, to provide a framework for future development of guidelines/standards governing engineering concepts of organ-on-a-chip models. The result of this work is presented here for interested parties, stakeholders, and other standards development organizations (SDOs) to foster further discussion and enhance the impact and benefits of these efforts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy