SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fagerberg Linn) "

Sökning: WFRF:(Fagerberg Linn)

  • Resultat 1-50 av 77
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellah, Tebani, et al. (författare)
  • Integration of molecular profiles in a longitudinal wellness profiling cohort.
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies andimmune cell profiling, complementedwith gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.
  •  
2.
  • Alvez, Maria Bueno, et al. (författare)
  • Next generation pan-cancer blood proteome profiling using proximity extension assay
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive characterization of blood proteome profiles in cancer patients can contribute to a better understanding of the disease etiology, resulting in earlier diagnosis, risk stratification and better monitoring of the different cancer subtypes. Here, we describe the use of next generation protein profiling to explore the proteome signature in blood across patients representing many of the major cancer types. Plasma profiles of 1463 proteins from more than 1400 cancer patients are measured in minute amounts of blood collected at the time of diagnosis and before treatment. An open access Disease Blood Atlas resource allows the exploration of the individual protein profiles in blood collected from the individual cancer patients. We also present studies in which classification models based on machine learning have been used for the identification of a set of proteins associated with each of the analyzed cancers. The implication for cancer precision medicine of next generation plasma profiling is discussed.
  •  
3.
  • Andersson, Sandra, et al. (författare)
  • The Transcriptomic and Proteomic Landscapes of Bone Marrow and Secondary Lymphoid Tissues
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12, s. e115911-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression landscape in a multitude of normal healthy tissues as well as cancers, enabling the characterization of both housekeeping genes and genes that display a tissue-specific expression pattern. This article focuses on identifying and describing genes with an elevated expression in four lymphohematopoietic tissue types (bone marrow, lymph node, spleen and appendix), based on the Human Protein Atlas-strategy that combines high throughput transcriptomics with affinity-based proteomics. Results: An enriched or enhanced expression in one or more of the lymphohematopoietic tissues, compared to other tissue-types, was seen for 693 out of 20,050 genes, and the highest levels of expression were found in bone marrow for neutrophilic and erythrocytic genes. A majority of these genes were found to constitute well-characterized genes with known functions in lymphatic or hematopoietic cells, while others are not previously studied, as exemplified by C19ORF59. Conclusions: In this paper we present a strategy of combining next generation RNA-sequencing with in situ affinity-based proteomics in order to identify and describe new gene targets for further research on lymphatic or hematopoietic cells and tissues. The results constitute lists of genes with enriched or enhanced expression in the four lymphohematopoietic tissues, exemplified also on protein level with immunohistochemical images.
  •  
4.
  • Arif, Muhammad, et al. (författare)
  • INetModels 2.0: An interactive visualization and database of multi-omics data
  • 2021
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 49:W1, s. W271-W276
  • Tidskriftsartikel (refereegranskat)abstract
    • It is essential to reveal the associations between various omics data for a comprehensive understanding of the altered biological process in human wellness and disease. To date, very few studies have focused on collecting and exhibiting multi-omics associations in a single database. Here, we present iNetModels, an interactive database and visualization platform of Multi-Omics Biological Networks (MOBNs). This platform describes the associations between the clinical chemistry, anthropometric parameters, plasma proteomics, plasma metabolomics, as well as metagenomics for oral and gut microbiome obtained from the same individuals. Moreover, iNetModels includes tissue- and cancer-specific Gene Co-expression Networks (GCNs) for exploring the connections between the specific genes. This platform allows the user to interactively explore a single feature's association with other omics data and customize its particular context (e.g. male/female specific). The users can also register their data for sharing and visualization of the MOBNs and GCNs. Moreover, iNetModels allows users who do not have a bioinformatics background to facilitate human wellness and disease research. iNetModels can be accessed freely at https://inetmodels.com without any limitation.
  •  
5.
  • Berglund, Lisa, et al. (författare)
  • A genecentric Human Protein Atlas for expression profiles based on antibodies
  • 2008
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 7:10, s. 2019-2027
  • Forskningsöversikt (refereegranskat)abstract
    • An attractive path forward in proteomics is to experimentally annotate the human protein complement of the genome in a genecentric manner. Using antibodies, it might be possible to design protein-specific probes for a representative protein from every protein-coding gene and to subsequently use the antibodies for systematical analysis of cellular distribution and subcellular localization of proteins in normal and disease tissues. A new version (4.0) of the Human Protein Atlas has been developed in a genecentric manner with the inclusion of all human genes and splice variants predicted from genome efforts together with a visualization of each protein with characteristics such as predicted membrane regions, signal peptide, and protein domains and new plots showing the uniqueness (sequence similarity) of every fraction of each protein toward all other human proteins. The new version is based on tissue profiles generated from 6120 antibodies with more than five million immunohistochemistry-based images covering 5067 human genes, corresponding to approximately 25% of the human genome. Version 4.0 includes a putative list of members in various protein classes, both functional classes, such as kinases, transcription factors, G-protein-coupled receptors, etc., and project-related classes, such as candidate genes for cancer or cardiovascular diseases. The exact antigen sequence for the internally generated antibodies has also been released together with a visualization of the application-specific validation performed for each antibody, including a protein array assay, Western blot analysis, immunohistochemistry, and, for a large fraction, immunofluorescence-based confocal microscopy. New search functionalities have been added to allow complex queries regarding protein expression profiles, protein classes, and chromosome location. The new version of the protein atlas thus is a resource for many areas of biomedical research, including protein science and biomarker discovery.
  •  
6.
  • Berglund, Lisa, et al. (författare)
  • A whole-genome bioinformatics approach to selection of antigens for systematic antibody generation
  • 2008
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 8:14, s. 2832-2839
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we present an antigen selection strategy based on a whole-genome bioinformatics approach, which is facilitated by an interactive visualization tool displaying protein features from both public resources and in-house generated data. The web-based bioinformatics platform has been designed for selection of multiple, non-overlapping recombinant protein epitope signature tags by display of predicted information relevant for antigens, including domain- and epitope sized sequence similarities to other proteins, transmembrane regions and signal peptides. The visualization tool also displays shared and exclusive protein regions for genes with multiple splice variants. A genome-wide analysis demonstrates that antigens for approximately 80% of the human protein-coding genes can be selected with this strategy.
  •  
7.
  • Bergman, Julia, et al. (författare)
  • The human adrenal gland proteome defined by transcriptomics and antibody-based profiling.
  • 2017
  • Ingår i: Endocrinology. - : Endocrine Society. - 0013-7227 .- 1945-7170. ; 158:2, s. 239-251
  • Tidskriftsartikel (refereegranskat)abstract
    • The adrenal gland is a composite endocrine organ with vital functions that include the synthesis and release of glucocorticoids and catecholamines. To define the molecular landscape that underlies the specific functions of the adrenal gland, we combined a genome-wide transcriptomics approach using messenger RNA sequencing of human tissues with immunohistochemistry-based protein profiling on tissue microarrays. Approximately two-thirds of all putative protein coding genes were expressed in the adrenal gland, and the analysis identified 253 genes with an elevated pattern of expression in the adrenal gland, with only 37 genes showing a markedly greater expression level (more than fivefold) in the adrenal gland compared with 31 other normal human tissue types analyzed. The analyses allowed for an assessment of the relative expression levels for well-known proteins involved in adrenal gland function but also identified previously poorly characterized proteins in the adrenal cortex, such as the FERM (4.1 protein, ezrin, radixin, moesin) domain containing 5 and the nephroblastoma overexpressed (NOV) protein homolog. We have provided a global analysis of the adrenal gland transcriptome and proteome, with a comprehensive list of genes with elevated expression in the adrenal gland and spatial information with examples of protein expression patterns for corresponding proteins. These genes and proteins constitute important starting points for an improved understanding of the normal function and pathophysiology of the adrenal glands.
  •  
8.
  • Butler, L. M., et al. (författare)
  • Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome
  • 2016
  • Ingår i: Cell Systems. - : Cell Press. - 2405-4712. ; 3:3, s. 287-301.e3
  • Tidskriftsartikel (refereegranskat)abstract
    • Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
  •  
9.
  • Danielsson, Angelika, et al. (författare)
  • The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12, s. e115421-
  • Tidskriftsartikel (refereegranskat)abstract
    • The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects.
  •  
10.
  • Danielsson, H., et al. (författare)
  • Blood protein profiles related to preterm birth and retinopathy of prematurity
  • 2022
  • Ingår i: Pediatric Research. - : Springer Science and Business Media LLC. - 0031-3998 .- 1530-0447. ; 91:4, s. 937-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP. Methods Longitudinal serum protein profiles the first months after birth in 14 extremely preterm infants were integrated with perinatal and ROP data. In total, 448 unique protein targets were analyzed using Proximity Extension Assays. Results We found 20 serum proteins associated with gestational age and/or ROP functioning within mainly angiogenesis, hematopoiesis, bone regulation, immune function, and lipid metabolism. Infants with severe ROP had persistent lower levels of several identified proteins during the first postnatal months. Conclusions The study contributes to the understanding of the relationship between longitudinal serum protein levels and immaturity and abnormal retinal neurovascular development. This is essential for understanding pathophysiological mechanisms and to optimize diagnosis, treatment and prevention for ROP. Impact Longitudinal protein profiles of 14 extremely preterm infants were analyzed using a novel multiplex protein analysis platform combined with perinatal data. Proteins associated with gestational age at birth and the neurovascular disease ROP were identified. Among infants with ROP, longitudinal levels of the identified proteins remained largely unchanged during the first postnatal months. The main functions of the proteins identified were angiogenesis, hematopoiesis, immune function, bone regulation, lipid metabolism, and central nervous system development. The study contributes to the understanding of longitudinal serum protein patterns related to gestational age and their association with abnormal retinal neuro-vascular development.
  •  
11.
  • Djureinovic, Dijana, et al. (författare)
  • Profiling cancer testis antigens in non-small-cell lung cancer
  • 2016
  • Ingår i: JCI INSIGHT. - : American Society for Clinical Investigation. - 2379-3708. ; 1:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.
  •  
12.
  • Djureinovic, Dijana, et al. (författare)
  • The human testis-specific proteome defined by transcriptomics and antibody-based profiling
  • 2014
  • Ingår i: Molecular human reproduction. - : Oxford University Press (OUP). - 1360-9947 .- 1460-2407. ; 20:6, s. 476-488
  • Tidskriftsartikel (refereegranskat)abstract
    • The testis' function is to produce haploid germ cells necessary for reproduction. Here we have combined a genome-wide transcriptomics analysis with immunohistochemistry-based protein profiling to characterize the molecular components of the testis. Deep sequencing (RNA-Seq) of normal human testicular tissue from seven individuals was performed and compared with 26 other normal human tissue types. All 20 050 putative human genes were classified into categories based on expression patterns. The analysis shows that testis is the tissue with the most tissue-specific genes by far. More than 1000 genes show a testis-enriched expression pattern in testis when compared with all other analyzed tissues. Highly testis enriched genes were further characterized with respect to protein localization within the testis, such as spermatogonia, spermatocytes, spermatids, sperm, Sertoli cells and Leydig cells. Here we present an immunohistochemistry-based analysis, showing the localization of corresponding proteins in different cell types and various stages of spermatogenesis, for 62 genes expressed at > 50-fold higher levels in testis when compared with other tissues. A large fraction of these genes were unexpectedly expressed in early stages of spermatogenesis. In conclusion, we have applied a genome-wide analysis to identify the human testis-specific proteome using transcriptomics and antibody-based protein profiling, providing lists of genes expressed in a tissue-enriched manner in the testis. The majority of these genes and proteins were previously poorly characterised in terms of localization and function, and our list provides an important starting point to increase our molecular understanding of human reproductive biology and disease.
  •  
13.
  •  
14.
  • Dodig-Crnkovic, Tea, et al. (författare)
  • Facets of individual-specific health signatures determined from longitudinal plasma proteome profiling
  • 2020
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 57
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. Methods: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. Findings: We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. Interpretation: This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches.
  •  
15.
  • Dusart, Philip, et al. (författare)
  • A systems-approach reveals human nestin is an endothelial-enriched, angiogenesis-independent intermediate filament protein
  • 2018
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The intermediate filament protein nestin is expressed during embryonic development, but considered largely restricted to areas of regeneration in the adult. Here, we perform a body-wide transcriptome and protein-profiling analysis to reveal that nestin is constitutively, and highly-selectively, expressed in adult human endothelial cells (EC), independent of proliferative status. Correspondingly, we demonstrate that it is not a marker for tumour EC in multiple malignancy types. Imaging of EC from different vascular beds reveals nestin subcellular distribution is shear-modulated. siRNA inhibition of nestin increases EC proliferation, and nestin expression is reduced in atherosclerotic plaque neovessels. eQTL analysis reveals an association between SNPs linked to cardiovascular disease and reduced aortic EC nestin mRNA expression. Our study challenges the dogma that nestin is a marker of proliferation, and provides insight into its regulation and function in EC. Furthermore, our systems-based approach can be applied to investigate body-wide expression profiles of any candidate protein. 
  •  
16.
  • Edfors, Fredrik, et al. (författare)
  • Enhanced validation of antibodies for research applications
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for standardized validation methods for antibody specificity and selectivity. Recently, five alternative validation pillars were proposed to explore the specificity of research antibodies using methods with no need for prior knowledge about the protein target. Here, we show that these principles can be used in a streamlined manner for enhanced validation of research antibodies in Western blot applications. More than 6,000 antibodies were validated with at least one of these strategies involving orthogonal methods, genetic knockdown, recombinant expression, independent antibodies, and capture mass spectrometry analysis. The results show a path forward for efforts to validate antibodies in an application-specific manner suitable for both providers and users.
  •  
17.
  • Edfors, Fredrik, 1988-, et al. (författare)
  • Validation of antibodies for Western blot applications using orthogonal methods
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is a great need for standardized validation methods for antibody specificity and selectivity. Here, we describe the use of orthogonal methods in which the specificity of an antibody in a particular application is determined based on correlation of protein abundance across several samples using an antibody-independent method. We show that pair-wise correlation between orthogonal samples can be used to score the specificity of antibodies in a standardized manner using a test panel of human cell lines. Here, we investigated two independent methods for validation of antibodies in Western blot applications, namely transcriptomics and targeted proteomics and we show that the two methods yield similar, but not identical results. The orthogonal methods can also be used to investigate on- and off- target binding for antibodies with multiple bands in the Western blot assay. In conclusion, orthogonal methods for antibody validation provide an attractive strategy for systematic validation of antibodies in a quantitative manner. 
  •  
18.
  • Edqvist, Per-Henrik D, et al. (författare)
  • Expression of Human Skin-Specific Genes Defined by Transcriptomics and Antibody-Based Profiling
  • 2015
  • Ingår i: Journal of Histochemistry and Cytochemistry. - : SAGE Publications. - 0022-1554 .- 1551-5044. ; 63:2, s. 129-141
  • Tidskriftsartikel (refereegranskat)abstract
    • To increase our understanding of skin, it is important to define the molecular constituents of the cell types and epidermal layers that signify normal skin. We have combined a genome-wide transcriptomics analysis, using deep sequencing of mRNA from skin biopsies, with immunohistochemistry-based protein profiling to characterize the landscape of gene and protein expression in normal human skin. The transcriptomics and protein expression data of skin were compared to 26 (RNA) and 44 (protein) other normal tissue types. All 20,050 putative protein-coding genes were classified into categories based on patterns of expression. We found that 417 genes showed elevated expression in skin, with 106 genes expressed at least five-fold higher than that in other tissues. The 106 genes categorized as skin enriched encoded for well-known proteins involved in epidermal differentiation and proteins with unknown functions and expression patterns in skin, including the C1orf68 protein, which showed the highest relative enrichment in skin. In conclusion, we have applied a genome-wide analysis to identify the human skin-specific proteome and map the precise localization of the corresponding proteins in different compartments of the skin, to facilitate further functional studies to explore the molecular repertoire of normal skin and to identify biomarkers related to various skin diseases.
  •  
19.
  • Fagerberg, Linn, et al. (författare)
  • Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics
  • 2014
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 13:2, s. 397-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody- based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.
  •  
20.
  • Fagerberg, Linn, et al. (författare)
  • Contribution of antibody-based protein profiling to the human chromosome-centric proteome project (C-HPP)
  • 2013
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:6, s. 2439-2448
  • Tidskriftsartikel (refereegranskat)abstract
    • A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas (www.proteinatlas.org).
  •  
21.
  • Fagerberg, Linn, et al. (författare)
  • Large-Scale Protein Profiling in Human Cell Lines Using Antibody-Based Proteomics
  • 2011
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 10:9, s. 4066-4075
  • Tidskriftsartikel (refereegranskat)abstract
    • Human cancer cell lines grown in vitro are frequently used to decipher basic cell biological phenomena and to also specifically study different forms of cancer. Here we present the first large-scale study of protein expression patterns in cell lines using an antibody-based proteomics approach. We analyzed the expression pattern of 5436 proteins in 45 different cell lines using hierarchical clustering, principal component analysis, and two-group comparisons for the identification of differentially expressed proteins. Our results show that immunohistochemically determined protein profiles can categorize cell lines into groups that overall reflect the tumor tissue of origin and that hematological cell lines appear to retain their protein profiles to a higher degree than cell lines established from solid tumors. The two-group comparisons reveal well-characterized proteins as well as previously unstudied proteins that could be of potential interest for further investigations. Moreover, multiple myeloma cells and cells of myeloid origin were found to share a protein profile, relative to the protein profile of lymphoid leukemia and lymphoma cells, possibly reflecting their common dependency of bone marrow microenvironment. This work also provides an extensive list of antibodies, for which high-resolution images as well as validation data are available on the Human Protein Atlas (www.proteinatlas.org), that are of potential use in cell line studies.
  •  
22.
  • Fagerberg, Linn, 1981- (författare)
  • Mapping the human proteome using bioinformatic methods
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The fundamental goal of proteomics is to gain an understanding of the expression and function of the proteome on the level of individual proteins, on the level of defined cell types and on the level of the entire organism. In this thesis, the human proteome is explored using membrane protein topology prediction methods to define the human membrane proteome and by global protein expression profiling, which relies on a complex study of the location and expression levels of proteins in tissues and cells. A whole-proteome analysis was performed based on the predicted protein-coding genes of humans using a selection of membrane protein topology prediction methods. The study used a majority decision-based method, which estimated that approximately 26% of the human genes encode for a membrane protein. The prediction results are displayed in a visualization tool to facilitate the selection of antigens to be used for antibody generation. Global protein expression profiles in a large number of cells and tissues in the human body were analyzed for more than 4000 protein targets, based on data from the antibody-based immunohistochemistry and immunofluorescence methods within the framework of the Human Protein Atlas project. The results revealed few cell-type specific proteins and a high fraction of human proteins expressed in most cells, suggesting that cell and tissue specificity is attained by a fine-tuned regulation of protein levels. The expression profiles were also used to analyze the relationship between 45 cell lines by hierarchical clustering and principal component analysis. The global protein expression patterns overall reflected the tumor origin of the cells, and also allowed for identification of proteins of importance for distinguishing different categories of cell lines, as defined by phenotype of progenitor cell. In addition, the protein distribution in 16 subcellular compartments in three of the human cell lines was mapped. A large fraction of proteins were localized in two or more compartments and, in line with previous results, a majority of proteins were detected in all three cell lines. Finally, mass spectrometry-based protein expression levels were compared to RNA-seq-based transcript expression levels in three cell lines. Highly ubiquitous mRNA expression was found and the changes of expression levels between the cell lines showed high correlations between proteins and transcripts. Large general differences in abundance of proteins from various functional classes were observed. A comparison between categories based on expression levels revealed that, in general, genes with varying expression levels between the cell lines or only expressed in one cell line were highly enriched for cell-surface proteins. These studies show a path for a systematic analysis to characterize the proteome in human cells, tissues and organs.
  •  
23.
  • Fagerberg, Linn, et al. (författare)
  • Mapping the subcellular protein distribution in three human cell lines
  • 2011
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 10:8, s. 3766-3777
  • Tidskriftsartikel (refereegranskat)abstract
    • The subcellular locations of proteins are closely related to their function and constitute an essential aspect for understanding the complex machinery of living cells. A systematic effort has been initiated to map the protein distribution in three functionally different cell lines with the aim to provide a subcellular localization index for at least one representative protein from all human protein-encoding genes. Here, we present the results of over 4,000 proteins mapped to 16 subcellular compartments. The results indicate a ubiquitous protein expression with a majority of the proteins found in all three cell lines and a large portion localized to two or more compartments. The inter-relationships between the subcellular compartments are visualized in a protein-compartment network based on all detected proteins. Hierarchical clustering was performed to determine how closely related the organelles are in terms of protein constituents and compare the proteins detected in each cell type. Our results show distinct organelle proteomes, well conserved across the cell types, and demonstrate that biochemically similar organelles are grouped together.
  •  
24.
  • Fagerberg, Linn, et al. (författare)
  • Prediction of the human membrane proteome
  • 2010
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 10:6, s. 1141-1149
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane proteins are key molecules in the cell, and are important targets for pharmaceutical drugs. Few three-dimensional structures of membrane proteins have been obtained, which makes computational prediction of membrane proteins crucial for studies of these key molecules. Here, seven membrane protein topology prediction methods based on different underlying algorithms, such as hidden Markov models, neural networks and support vector machines, have been used for analysis of the protein sequences from the 21 416 annotated genes in the human genome. The number of genes coding for a protein with predicted cc-helical transmembrane region(s) ranged from 5508 to 7651, depending on the method used. Based on a majority decision method, we estimate 5539 human genes to code for membrane proteins, corresponding to approximately 26% of the human protein-coding genes. The largest fraction of these proteins has only one predicted transmembrane region, but there are also many proteins with seven predicted transmembrane regions, including the G-protein coupled receptors. A visualization tool displaying the topologies suggested by the eight prediction methods, for all predicted membrane proteins, is available on the public Human Protein Atlas portal (www.proteinatlas.org).
  •  
25.
  • Fagerberg, Linn, et al. (författare)
  • The Global Protein Expression Pattern in Human Cell Lines
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Human cancer cell lines grown in vitro are frequently used to decipher basic cell biological phenomena but also to specifically study different forms of cancer. Here we present the first large-scale study of protein expression patterns in cell lines using an antibody-based proteomics approach. We analyzed the expression pattern of 5436 proteins in 45 different cell lines using hierarchical clustering, principal component analysis and two-group comparisons for the identification of differentially expressed proteins. The results show that protein profiles of cell lines, as determined using immunohistochemistry, allow for a hierarchical clustering that overall reflects tumor tissues of origin. Hematological cell lines appear to retain their protein profiles to a higher degree than cell lines established from solid tumors, resulting in a clustering that well reflects progenitor cell types. The discrepancy may reflect different levels of in vitro induced alterations in adherent and suspension grown cell lines, respectively. In addition, multiple myeloma cells and cells of myeloid origin were found to share a protein profile, relative the protein profile of lymphoid leukemia and lymphoma cells, possibly reflecting their common dependency of bone marrow microenvironment.  
  •  
26.
  • Gremel, Gabriela, et al. (författare)
  • The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling
  • 2015
  • Ingår i: Journal of gastroenterology. - : Springer. - 0944-1174 .- 1435-5922. ; 50:1, s. 46-57
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The gastrointestinal tract (GIT) is subdivided into different anatomical organs with many shared functions and characteristics, but also distinct differences. We have combined a genome-wide transcriptomics analysis with immunohistochemistry-based protein profiling to describe the gene and protein expression patterns that define the human GIT. METHODS: RNA sequencing data derived from stomach, duodenum, jejunum/ileum and colon specimens were compared to gene expression levels in 23 other normal human tissues analysed with the same method. Protein profiling based on immunohistochemistry and tissue microarrays was used to sub-localize the corresponding proteins with GIT-specific expression into sub-cellular compartments and cell types. RESULTS: Approximately 75% of all human protein-coding genes were expressed in at least one of the GIT tissues. Only 51 genes showed enriched expression in either one of the GIT tissues and an additional 83 genes were enriched in two or more GIT tissues. The list of GIT-enriched genes with validated protein expression patterns included various well-known but also previously uncharacterised or poorly studied genes. For instance, the colon-enriched expression of NXPE family member 1 (NXPE1) was established, while NLR family, pyrin domain-containing 6 (NLRP6) expression was primarily found in the human small intestine. CONCLUSIONS: We have applied a genome-wide analysis based on transcriptomics and antibody-based protein profiling to identify genes that are expressed in a specific manner within the human GIT. These genes and proteins constitute important starting points for an improved understanding of the normal function and the different states of disease associated with the GIT.
  •  
27.
  • Gummesson, Anders, 1973, et al. (författare)
  • Longitudinal plasma protein profiling of newly diagnosed type 2 diabetes
  • 2021
  • Ingår i: EBioMedicine. - : Elsevier B.V.. - 2352-3964. ; 63
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Comprehensive proteomics profiling may offer new insights into the dysregulated metabolic milieu of type 2 diabetes, and in the future, serve as a useful tool for personalized medicine. This calls for a better understanding of circulating protein patterns at the early stage of type 2 diabetes as well as the dynamics of protein patterns during changes in metabolic status. Methods: To elucidate the systemic alterations in early-stage diabetes and to investigate the effects on the proteome during metabolic improvement, we measured 974 circulating proteins in 52 newly diagnosed, treatment-naïve type 2 diabetes subjects at baseline and after 1 and 3 months of guideline-based diabetes treatment, while comparing their protein profiles to that of 94 subjects without diabetes. Findings: Early stage type 2 diabetes was associated with distinct protein patterns, reflecting key metabolic syndrome features including insulin resistance, adiposity, hyperglycemia and liver steatosis. The protein profiles at baseline were attenuated during guideline-based diabetes treatment and several plasma proteins associated with metformin medication independently of metabolic variables, such as circulating EPCAM. Interpretation: The results advance our knowledge about the biochemical manifestations of type 2 diabetes and suggest that comprehensive protein profiling may serve as a useful tool for metabolic phenotyping and for elucidating the biological effects of diabetes treatments. Funding: This work was supported by the Swedish Heart and Lung Foundation, the Swedish Research Council, the Erling Persson Foundation, the Knut and Alice Wallenberg Foundation, and the Swedish state under the agreement between the Swedish government and the county councils (ALF-agreement).
  •  
28.
  • Habuka, Masato, et al. (författare)
  • The Kidney Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12, s. e116125-
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n=11), proximal tubules (n=120), distal tubules (n=9) or collecting ducts (n=8). Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease.
  •  
29.
  • Habuka, Masato, et al. (författare)
  • The Urinary Bladder Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes upregulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder.
  •  
30.
  • Häussler, Ragna S., et al. (författare)
  • Systematic Development of Sandwich Immunoassays for the Plasma Secretome
  • 2019
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861.
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma proteome offers a clinically useful window into human health. Recent advances from highly multiplexed assays now call for appropriate pipelines to validate individual candidates. Here, a workflow is developed to build dual binder sandwich immunoassays (SIA) and for proteins predicted to be secreted into plasma. Utilizing suspension bead arrays, ≈1800 unique antibody pairs are first screened against 209 proteins with recombinant proteins as well as EDTA plasma. Employing 624 unique antibodies, dilution-dependent curves in plasma and concentration-dependent curves of full-length proteins for 102 (49%) of the targets are obtained. For 22 protein assays, the longitudinal, interindividual, and technical performance is determined in a set of plasma samples collected from 18 healthy subjects every third month over 1 year. Finally, 14 of these assays are compared with with SIAs composed of other binders, proximity extension assays, and affinity-free targeted mass spectrometry. The workflow provides a multiplexed approach to screen for SIA pairs that suggests using at least three antibodies per target. This design is applicable for a wider range of targets of the plasma proteome, and the assays can be applied for discovery but also to validate emerging candidates derived from other platforms.
  •  
31.
  • Jin, Han, et al. (författare)
  • Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1, s. 5417-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell lines are valuable resources as model for human biology and translational medicine. It is thus important to explore the concordance between the expression in various cell lines vis-à-vis human native and disease tissues. In this study, we investigate the expression of all human protein-coding genes in more than 1,000 human cell lines representing 27 cancer types by a genome-wide transcriptomics analysis. The cell line gene expression is compared with the corresponding profiles in various tissues, organs, single-cell types and cancers. Here, we present the expression for each cell line and give guidance for the most appropriate cell line for a given experimental study. In addition, we explore the cancer-related pathway and cytokine activity of the cell lines to aid human biology studies and drug development projects. All data are presented in an open access cell line section of the Human Protein Atlas to facilitate the exploration of all human protein-coding genes across these cell lines.
  •  
32.
  • Kampf, Caroline, et al. (författare)
  • Defining the human gallbladder proteome by transcriptomics and affinity proteomics
  • 2014
  • Ingår i: Proteomics. - : Wiley. - 1615-9853 .- 1615-9861. ; 14:21-22, s. 2498-2507
  • Tidskriftsartikel (refereegranskat)abstract
    • Global protein analysis of human gallbladder tissue is vital for identification of molecular regulators and effectors of its physiological activity. Here, we employed a genome-wide deep RNA sequencing analysis in 28 human tissues to identify the genes overrepresented in the gallbladder and complemented it with antibody-based immunohistochemistry in 48 human tissues. We characterized human gallbladder proteins and identified 140 gallbladder-specific proteins with an elevated expression in the gallbladder as compared to the other analyzed tissues. Five genes were categorized as enriched, with at least fivefold higher levels in gallbladder, 60 genes were categorized as group enriched with elevated transcript levels in gallbladder shared with at least one other tissue and 75 genes were categorized as enhanced with higher expression than the average expression in other tissues. We explored the localization of the genes within the gallbladder through cell-type specific antibody-based protein profiling and the subcellular localization of the genes through immunofluorescent-based profiling. Finally, we revealed the biological processes and metabolic functions carried out by these genes through the use of GO, KEGG Pathway, and HMR2.0 that is compilation of the human metabolic reactions. We demonstrated the results of the combined analysis of the transcriptomics and affinity proteomics.
  •  
33.
  • Kampf, Caroline, et al. (författare)
  • The human liver-specific proteome defined by transcriptomics and antibody-based profiling
  • 2014
  • Ingår i: FASEB Journal. - : Wiley. - 1530-6860 .- 0892-6638. ; 28:7, s. 2901-2914
  • Tidskriftsartikel (refereegranskat)abstract
    • Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.
  •  
34.
  • Karlsson, Max, et al. (författare)
  • A single-cell type transcriptomics map of human tissues
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:31
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in molecular profiling have opened up the possibility to map the expression of genes in cells, tissues, and organs in the human body. Here, we combined single-cell transcriptomics analysis with spatial antibody-based protein profiling to create a high-resolution single-cell type map of human tissues. An open access atlas has been launched to allow researchers to explore the expression of human protein-coding genes in 192 individual cell type clusters. An expression specificity classification was performed to determine the number of genes elevated in each cell type, allowing comparisons with bulk transcriptomics data. The analysis highlights distinct expression clusters corresponding to cell types sharing similar functions, both within the same organs and between organs.
  •  
35.
  • Karlsson, Max, et al. (författare)
  • Genome-wide annotation of protein-coding genes in pig
  • 2022
  • Ingår i: BMC Biology. - : Springer Nature. - 1741-7007. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is a need for functional genome-wide annotation of the protein-coding genes to get a deeper understanding of mammalian biology. Here, a new annotation strategy is introduced based on dimensionality reduction and density-based clustering of whole-body co-expression patterns. This strategy has been used to explore the gene expression landscape in pig, and we present a whole-body map of all protein-coding genes in all major pig tissues and organs. Results: An open-access pig expression map (www.rnaatlas.org ) is presented based on the expression of 350 samples across 98 well-defined pig tissues divided into 44 tissue groups. A new UMAP-based classification scheme is introduced, in which all protein-coding genes are stratified into tissue expression clusters based on body-wide expression profiles. The distribution and tissue specificity of all 22,342 protein-coding pig genes are presented. Conclusions: Here, we present a new genome-wide annotation strategy based on dimensionality reduction and density-based clustering. A genome-wide resource of the transcriptome map across all major tissues and organs in pig is presented, and the data is available as an open-access resource (www.rnaatlas.org), including a comparison to the expression of human orthologs.
  •  
36.
  • Karlsson, Max, et al. (författare)
  • Genome-wide single cell annotation of the human protein-coding genes
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • An important quest for the life science community is to deliver a complete annotation of the human building-blocks of life, the genes and the proteins. Here, we report on a genome-wide effort to annotate all protein-coding genes based on single cell transcriptomics data representing all major tissues and organs in the human body, integrated with data from bulk transcriptomics and antibody-based tissue profiling. Altogether, 25 tissues have been analyzed with single cell transcriptomics resulting in genome-wide expression in 444 single cell types using a strategy involving pooling data from individual cells to obtain genome-wide expression profiles of individual cell type. We introduce a new genome-wide classification tool based on clustering of similar expression profiles across single cell types, which can be visualized using dimensional reduction maps (UMAP). The clustering classification is integrated with a new “tau” score classification for all protein-coding genes, resulting in a measure of single cell specificity across all cell types for all individual genes. The analysis has allowed us to annotate all human protein-coding genes with regards to function and spatial distribution across individual cell types across all major tissues and organs in the human body. A new version of the open access Human Protein Atlas (www.proteinatlas.org) has been launched to enable researchers to explore the new genome-wide annotation on an individual gene level.
  •  
37.
  • Karlsson, Max J., et al. (författare)
  • Inflammation and Apolipoproteins Are Potential Biomarkers for Stratification of Cutaneous Melanoma Patients for Immunotherapy and Targeted Therapy
  • 2021
  • Ingår i: Cancer Research. - : American Association for Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 81:9, s. 2545-2555
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant cutaneous melanoma is one of the most common cancers in young adults. During the last decade, targeted and immunotherapies have significantly increased the overall survival of patients with malignant cutaneous melanoma. Nevertheless, disease progression is common, and a lack of predictive biomarkers of patient response to therapy hinders individualized treatment strategies. To address this issue, we performed a longitudinal study using an unbiased proteomics approach to identify and quantify proteins in plasma both before and during treatment from 109 patients treated with either targeted or immunotherapy. Linear modeling and machine learning approaches identified 43 potential prognostic and predictive biomarkers. A reverse correlation between apolipoproteins and proteins related to inflammation was observed. In the immunotherapy group, patients with low pretreatment expression of apolipoproteins and high expression of inflammation markers had shorter progression-free survival. Similarly, increased expression of LDHB during treatment elicited a significant impact on response to immunotherapy. Overall, we identified potential common and treatment-specific biomarkers in malignant cutaneous melanoma, paving the way for clinical use of these biomarkers following validation on a larger cohort. Significance: This study identifies a potential biomarker panel that could improve the selection of therapy for patients with cutaneous melanoma.
  •  
38.
  • Karlsson, Max (författare)
  • Mapping and annotating the mammalian body-wide protein-coding gene expression
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A central aim of fundamental research is to create conditions necessary for fueling further research and innovation. Our understanding of basic biology is central for future developments of tools for diagnosing, monitoring, and treating disease. This doctoral thesis focuses on mapping the mammalian protein-coding gene expression in healthy cells and tissues, and annotation of genes based on their expression patterns, specificity, location, and function. This has in large part been achieved by using large scale transcriptomic and proteomic profiling to describe the gene expression landscape that defines the identities of the great diversity of cells present in mammals. Characterization of gene expression across different tissues and cell types provide fundamental tools to enable the exploration, summary, and ultimately, the annotation of the mammalian proteome, which is still incomplete.The studies comprising this thesis have contributed to the Human Protein Atlas, an online open-access portal for proteomic and transcriptomic data, with the aim to profile each human protein-coding gene to create a spatial map of the molecular organization of the human body, providing basic tools for the scientific community. Paper I comprises an effort to catalogue all proteins that are actively secreted from cells; defining the human secretome. Paper II entails the deep characterization and annotation of the protein-coding transcriptome of 18 peripheral immune cell types. Paper III describes the, to date, most comprehensive tissue-based transcriptomic profiling of protein-coding genes in 98 tissues of the increasingly important model animal pig. Paper IV extends previous tissue-based maps of the human protein-coding genome by integration of 13 single cell transcriptome datasets. Paper V explores the human protein-coding genome in a clustering-based annotation of co-expressed genes across single cells and tissues to provide a framework for finding previously unknown functional relationships between genes by the principle of “guilt-by-association”.In summary, the work described here entails a small contribution to the grand effort of spatially mapping proteins across tissues and cell types, for building a framework of biological knowledge that can lead to increased understanding of the constituents that make us humans.
  •  
39.
  • Klevebring, Daniel, 1981-, et al. (författare)
  • Analysis of transcript and protein overlap in a human osteosarcoma cell line
  • 2010
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 11:1, s. 684-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An interesting field of research in genomics and proteomics is to compare the overlap between the transcriptome and the proteome. Recently, the tools to analyse gene and protein expression on a whole-genome scale have been improved, including the availability of the new generation sequencing instruments and high-throughput antibody-based methods to analyze the presence and localization of proteins. In this study, we used massive transcriptome sequencing (RNA-seq) to investigate the transcriptome of a human osteosarcoma cell line and compared the expression levels with in situ protein data obtained in-situ from antibody-based immunohistochemistry (IHC) and immunofluorescence microscopy (IF). Results: A large-scale analysis based on 2749 genes was performed, corresponding to approximately 13% of the protein coding genes in the human genome. We found the presence of both RNA and proteins to a large fraction of the analyzed genes with 60% of the analyzed human genes detected by all three methods. Only 34 genes (1.2%) were not detected on the transcriptional or protein level with any method. Our data suggest that the majority of the human genes are expressed at detectable transcript or protein levels in this cell line. Since the reliability of antibodies depends on possible cross-reactivity, we compared the RNA and protein data using antibodies with different reliability scores based on various criteria, including Western blot analysis. Gene products detected in all three platforms generally have good antibody validation scores, while those detected only by antibodies, but not by RNA sequencing, generally consist of more low-scoring antibodies. Conclusion: This suggests that some antibodies are staining the cells in an unspecific manner, and that assessment of transcript presence by RNA-seq can provide guidance for validation of the corresponding antibodies.
  •  
40.
  • Kotol, David, et al. (författare)
  • Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma
  • 2023
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 15:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.
  •  
41.
  •  
42.
  • Lakshmikanth, T., et al. (författare)
  • Human Immune System Variation during 1 Year
  • 2020
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 32:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The human immune system varies extensively between individuals, but variation within individuals over time has not been well characterized. Systems-level analyses allow for simultaneous quantification of many interacting immune system components and the inference of global regulatory principles. Here, we present a longitudinal, systems-level analysis in 99 healthy adults 50 to 65 years of age and sampled every third month for 1 year. We describe the structure of interindividual variation and characterize extreme phenotypes along a principal cum. From coordinated measurement fluctuations, we infer relationships between 115 immune cell populations and 750 plasma proteins constituting the blood immune system. While most individuals have stable immune systems, the degree of longitudinal variability is an individual feature. The most variable individuals, in the absence of overt infections, exhibited differences in markers of metabolic health suggestive of a possible link between metabolic and immunologic homeostatic regulation.
  •  
43.
  • Lindskog, Cecilia, et al. (författare)
  • The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling
  • 2015
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and proteins with elevated expression in cardiac and skeletal muscle in relation to all other major human tissues and organs using a global transcriptomics analysis complemented with antibody-based profiling to localize the corresponding proteins on a single cell level. Results: Our study identified a comprehensive list of genes expressed in cardiac and skeletal muscle. The genes with elevated expression were further stratified according to their global expression pattern across the human body as well as their precise localization in the muscle tissues. The functions of the proteins encoded by the elevated genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins involved in energy metabolism, which demonstrates the extreme specialization of these muscle tissues to provide energy for contraction. Conclusions: Our results provide a comprehensive list of genes and proteins elevated in striated muscles. A number of proteins not previously characterized in cardiac and skeletal muscle were identified and localized to specific cellular subcompartments. These proteins represent an interesting starting point for further functional analysis of their role in muscle biology and disease.
  •  
44.
  • Lindskog, Cecilia, et al. (författare)
  • The lung-specific proteome defined by integration of transcriptomics and antibody-based profiling
  • 2014
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 28:12, s. 5184-5196
  • Tidskriftsartikel (refereegranskat)abstract
    • The combined action of multiple cell types is essential for the physiological function of the lung, and increased awareness of the molecular constituents characterizing each cell type is likely to advance the understanding of lung biology and disease. In the current study, we used genome-wide RNA sequencing of normal lung parenchyma and 26 additional tissue types, combined with antibody-based protein profiling, to localize the expression to specific cell types. Altogether, 221 genes were found to be elevated in the lung compared with their expression in other analyzed tissues. Among the gene products were several well-known markers, but also several proteins previously not described in the context of the lung. To link the lungspecific molecular repertoire to human disease, survival associations of pneumocyte-specific genes were assessed by using transcriptomics data from 7 non-small-cell lung cancer (NSCLC) cohorts. Transcript levels of 10 genes (SFTPB, SFTPC, SFTPD, SLC34A2, LAMP3, CACNA2D2, AGER, EMP2, NKX2-1, and NAPSA) were significantly associated with survival in the adenocarcinoma subgroup, thus qualifying as promising biomarker candidates. In summary, based on an integrated omics approach, we identified genes with elevated expression in lung and localized corresponding protein expression to different cell types. As biomarker candidates, these proteins may represent intriguing starting points for further exploration in health and disease.-Lindskog, C., Fagerberg, L., Hallstrom, B., Edlund, K., Hellwig, B., Rahnenfuhrer, J., Kampf, C., Uhlen, M., Ponten, F., Micke, P. The lung-specific proteome defined by integration of transcriptomics and antibody-based profiling.
  •  
45.
  • Liu, Zihe, et al. (författare)
  • Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering
  • 2014
  • Ingår i: Applied and Environmental Microbiology. - 0099-2240 .- 1098-5336. ; 80:17, s. 5542-5550
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing demand for industrial enzymes and biopharmaceutical proteins relies on robust production hosts with high protein yield and productivity. Being one of the best-studied model organisms and capable of performing posttranslational modifications, the yeast Saccharomyces cerevisiae is widely used as a cell factory for recombinant protein production. However, many recombinant proteins are produced at only 1% (or less) of the theoretical capacity due to the complexity of the secretory pathway, which has not been fully exploited. In this study, we applied the concept of inverse metabolic engineering to identify novel targets for improving protein secretion. Screening that combined UV-random mutagenesis and selection for growth on starch was performed to find mutant strains producing heterologous amylase 5-fold above the level produced by the reference strain. Genomic mutations that could be associated with higher amylase secretion were identified through whole-genome sequencing. Several single-point mutations, including an S196I point mutation in the VTA1 gene coding for a protein involved in vacuolar sorting, were evaluated by introducing these to the starting strain. By applying this modification alone, the amylase secretion could be improved by 35%. As a complement to the identification of genomic variants, transcriptome analysis was also performed in order to understand on a global level the transcriptional changes associated with the improved amylase production caused by UV mutagenesis.
  •  
46.
  • Lundberg, Emma, et al. (författare)
  • Defining the transcriptome and proteome in three functionally different human cell lines
  • 2010
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292 .- 1744-4292. ; 6, s. 450-
  • Tidskriftsartikel (refereegranskat)abstract
    • An essential question in human biology is how cells and tissues differ in gene and protein expression and how these differences delineate specific biological function. Here, we have performed a global analysis of both mRNA and protein levels based on sequence-based transcriptome analysis (RNA-seq), SILAC-based mass spectrometry analysis and antibody-based confocal microscopy. The study was performed in three functionally different human cell lines and based on the global analysis, we estimated the fractions of mRNA and protein that are cell specific or expressed at similar/different levels in the cell lines. A highly ubiquitous RNA expression was found with > 60% of the gene products detected in all cells. The changes of mRNA and protein levels in the cell lines using SILAC and RNA ratios show high correlations, even though the genome-wide dynamic range is substantially higher for the proteins as compared with the transcripts. Large general differences in abundance for proteins from various functional classes are observed and, in general, the cell-type specific proteins are low abundant and highly enriched for cell-surface proteins. Thus, this study shows a path to characterize the transcriptome and proteome in human cells from different origins.
  •  
47.
  • Mardinoglu, Adil, 1982, et al. (författare)
  • Defining the Human Adipose Tissue Proteome To Reveal Metabolic Alterations in Obesity
  • 2014
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:11, s. 5106-5119
  • Tidskriftsartikel (refereegranskat)abstract
    • White adipose tissue (WAT) has a major role in the progression of obesity. Here, we combined data from RNA-Seq and antibody-based immunohistochemistry to describe the normal physiology of human WAT obtained from three female subjects and explored WAT-specific genes by comparing WAT to 26 other major human tissues. Using the protein evidence in WAT, we validated the content of a genome-scale metabolic model for adipocytes. We employed this high-quality model for the analysis of subcutaneous adipose tissue (SAT) gene expression data obtained from subjects included in the Swedish Obese Subjects Sib Pair study to reveal molecular differences between lean and obese individuals. We integrated SAT gene expression and plasma metabolomics data, investigated the contribution of the metabolic differences in the mitochondria of SAT to the occurrence of obesity, and eventually identified cytosolic branched-chain amino acid (BCAA) transaminase 1 as a potential target that can be used for drug development. We observed decreased glutaminolysis and alterations in the BCAAs metabolism in SAT of obese subjects compared to lean subjects. We also provided mechanistic explanations for the changes in the plasma level of BCAAs, glutamate, pyruvate, and alpha-ketoglutarate in obese subjects. Finally, we validated a subset of our model-based predictions in 20 SAT samples obtained from 10 lean and 10 obese male and female subjects.
  •  
48.
  • Neiman, Maja, 1983-, et al. (författare)
  • Individual and stable autoantibody repertoires in healthy individuals
  • 2019
  • Ingår i: Autoimmunity. - : TAYLOR & FRANCIS LTD. - 0891-6934 .- 1607-842X. ; 52:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • In the era towards precision medicine, we here present the individual specific autoantibody signatures of 193 healthy individuals. The self-reactive IgG signatures are stable over time in a way that each individual profile is recognized in longitudinal sampling. The IgG autoantibody reactivity towards an antigen array comprising 335 protein fragments, representing 204 human proteins with potential relevance to autoimmune disorders, was measured in longitudinal plasma samples from 193 healthy individuals. This analysis resulted in unique autoantibody barcodes for each individual that were maintained over one year's time. The reactivity profiles, or signatures, are person specific in regards to the number of reactivities and antigen specificity. Two independent data sets were consistent in that each healthy individual displayed reactivity towards 0-16 antigens, with a median of six. Subsequently, four selected individuals were profiled on in-house produced high-density protein arrays containing 23,000 protein fragments representing 14,000 unique protein coding genes. Based on a unique, broad and deep longitudinal profiling of autoantibody reactivities, our results demonstrate a unique autoreactive profile in each analyzed healthy individual. The need and interest for broad-ranged and high-resolution molecular profiling of healthy individuals is rising. We have here generated and assessed an initial perspective on the global distribution of the self-reactive IgG repertoire in healthy individuals, by investigating 193 well-characterized healthy individuals.
  •  
49.
  • Nookaew, Intawat, 1977, et al. (författare)
  • A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays : a case study in Saccharomyces cerevisiae
  • 2012
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 40:20, s. 10084-10097
  • Tidskriftsartikel (refereegranskat)abstract
    • RNA-seq, has recently become an attractive method of choice in the studies of transcriptomes, promising several advantages compared with microarrays. In this study, we sought to assess the contribution of the different analytical steps involved in the analysis of RNA-seq data generated with the Illumina platform, and to perform a cross-platform comparison based on the results obtained through Affymetrix microarray. As a case study for our work we, used the Saccharomyces cerevisiae strain CEN.PK 113-7D, grown under two different conditions (batch and chemostat). Here, we asses the influence of genetic variation on the estimation of gene expression level using three different aligners for read-mapping (Gsnap, Stampy and TopHat) on S288c genome, the capabilities of five different statistical methods to detect differential gene expression (baySeq, Cuffdiff, DESeq, edgeR and NOISeq) and we explored the consistency between RNA-seq analysis using reference genome and de novo assembly approach. High reproducibility among biological replicates (correlation >= 0.99) and high consistency between the two platforms for analysis of gene expression levels (correlation >= 0.91) are reported. The results from differential gene expression identification derived from the different statistical methods, as well as their integrated analysis results based on gene ontology annotation are in good agreement. Overall, our study provides a useful and comprehensive comparison between the two platforms (RNA-seq and microrrays) for gene expression analysis and addresses the contribution of the different steps involved in the analysis of RNA-seq data.
  •  
50.
  • O'Hurley, Gillian, et al. (författare)
  • Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 77
Typ av publikation
tidskriftsartikel (67)
annan publikation (7)
doktorsavhandling (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (67)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Fagerberg, Linn (74)
Uhlén, Mathias (73)
Pontén, Fredrik (44)
Oksvold, Per (19)
Edfors, Fredrik (18)
Lindskog, Cecilia (18)
visa fler...
Lundberg, Emma (18)
Sivertsson, Åsa (17)
Zhong, Wen (15)
von Feilitzen, Kalle (15)
Hallström, Björn M. (15)
Nilsson, Peter (14)
Kampf, Caroline (14)
Schwenk, Jochen M. (13)
Asplund, Anna (13)
Karlsson, Max (12)
Mardinoglu, Adil (11)
Zwahlen, Martin (11)
Edlund, Karolina (11)
Zhang, Cheng (9)
Hober, Sophia (9)
Mulder, Jan (9)
Gummesson, Anders, 1 ... (8)
Bergström, Göran, 19 ... (8)
Mardinoglu, Adil, 19 ... (8)
Tegel, Hanna (8)
Odeberg, Jacob (7)
Nielsen, Jens B, 196 ... (6)
Abdellah, Tebani (6)
Arif, Muhammad (6)
Forsström, Björn (6)
Wester, Kenneth (6)
Djureinovic, Dijana (6)
Al-Khalili Szigyarto ... (5)
Alvez, Maria Bueno (5)
Wernérus, Henrik (5)
Danielsson, Angelika (5)
Berglund, Lisa (5)
Rockberg, Johan (5)
Björling, Erik (5)
Dodig-Crnkovic, Tea (4)
Odeberg, Jacob, Prof ... (4)
Nilsson, Kenneth (4)
Micke, Patrick (4)
Danielsson, Frida (4)
Li, Xiangyu (4)
Kotol, David (4)
Hallström, Björn (4)
Nielsen, Jens (4)
Persson, Anja (4)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (75)
Uppsala universitet (44)
Karolinska Institutet (36)
Göteborgs universitet (11)
Chalmers tekniska högskola (11)
Linköpings universitet (7)
visa fler...
Lunds universitet (4)
Stockholms universitet (3)
Umeå universitet (2)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (76)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (46)
Medicin och hälsovetenskap (46)
Teknik (7)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy