SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fassbender A) "

Sökning: WFRF:(Fassbender A)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Salikhov, Ruslan, et al. (författare)
  • Coupling of terahertz light with nanometre-wavelength magnon modes via spin-orbit torque
  • 2023
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 19:4, s. 529-535
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-based technologies can operate at terahertz frequencies but require manipulation techniques that work at ultrafast timescales to become practical. For instance, devices based on spin waves, also known as magnons, require efficient generation of high-energy exchange spin waves at nanometre wavelengths. To achieve this, a substantial coupling is needed between the magnon modes and an electro-magnetic stimulus such as a coherent terahertz field pulse. However, it has been difficult to excite non-uniform spin waves efficiently using terahertz light because of the large momentum mismatch between the submillimetre-wave radiation and the nanometre-sized spin waves. Here we improve the light–matter interaction by engineering thin films to exploit relativistic spin–orbit torques that are confined to the interfaces of heavy metal/ferromagnet heterostructures. We are able to excite spin-wave modes with frequencies of up to 0.6 THz and wavelengths as short as 6 nm using broadband terahertz radiation. Numerical simulations demonstrate that the coupling of terahertz light to exchange-dominated magnons originates solely from interfacial spin–orbit torques. Our results are of general applicability to other magnetic multilayered structures, and offer the prospect of nanoscale control of high-frequency signals.
  •  
6.
  • Schultheiss, K., et al. (författare)
  • Excitation of Whispering Gallery Magnons in a Magnetic Vortex
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the generation of whispering gallery magnons with unprecedented high wave vectors via nonlinear 3-magnon scattering in a μm-sized magnetic Ni81Fe19 disc which is in the vortex state. These modes exhibit a strong localization at the perimeter of the disc and practically zero amplitude in an extended area around the vortex core. They originate from the splitting of the fundamental radial magnon modes, which can be resonantly excited in a vortex texture by an out-of-plane microwave field. We shed light on the basics of this nonlinear scattering mechanism from an experimental and theoretical point of view. Using Brillouin light scattering microscopy, we investigated the frequency and power dependence of the 3-magnon splitting. The spatially resolved mode profiles give evidence for the localization at the boundaries of the disc and allow for a direct determination of the modes wave number.
  •  
7.
  • Rosati, P., et al. (författare)
  • Multi-wavelength study of XMMU J2235.3-2557 : the most massive galaxy cluster at z > 1
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 508:2, s. 583-591
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The galaxy cluster XMMU J2235.3-2557 (hereafter XMM2235), spectroscopically confirmed at z = 1.39, is one of the most distant X-ray selected galaxy clusters. It has been at the center of a multi-wavelength observing campaign with ground and space facilities. Aims. We characterize the galaxy populations of passive members, the thermodynamical properties and metal abundance of the hot gas, and the total mass of the system using imaging data with HST/ACS (i(775) and z(850) bands) and VLT/ISAAC (J and K-S bands), extensive spectroscopic data obtained with VLT/FORS2, and deep (196 ks) Chandra observations. Methods. Chandra data allow temperature and metallicity to be measured with good accuracy and the X-ray surface brightness profile to be traced out to 1' (or 500 kpc), thus allowing the mass to be reliably estimated. Out of a total sample of 34 spectroscopically confirmed cluster members, we selected 16 passive galaxies (without detectable [OII]) within the central 2' (or 1 Mpc) with ACS coverage, and inferred star formation histories for subsamples of galaxies inside and outside the core by modeling their spectrophotometric data with spectral synthesis models. Results. Chandra data show a regular elongated morphology, closely resembling the distribution of core galaxies, with a significant cool core. We measure a global X-ray temperature of kT = 8.6(-1.2)(+1.3) keV (68% confidence), which we find to be robust against several systematics involved in the X-ray spectral analysis. By detecting the rest frame 6.7 keV Iron K line in the Chandra spectrum, we measure a metallicity Z = 0.26(-0.16)(+0.20) Z(circle dot). In the likely hypothesis of hydrostatic equilibrium, we obtain a total mass of M-tot( 1Mpc) = (5.9 +/- 1.3) x 10(14) M-circle dot. By modeling both the composite spectral energy distributions and spectra of the passive galaxies in and outside the core, we find a strong mean age radial gradient. Core galaxies, with stellar masses in excess of 10(11) M-circle dot, appear to have formed at an earlier epoch with a relatively short star formation phase (z = 5-6), whereas passive galaxies outside the core show spectral signatures suggesting a prolonged star formation phase to redshifts as low as z approximate to 2. Conclusions. Overall, our analysis implies that XMM2235 is the hottest and most massive bona-fide cluster discovered to date at z > 1, with a baryonic content, both its galaxy population and intracluster gas, in a significantly advanced evolutionary stage at 1/3 of the current age of the Universe.
  •  
8.
  • Sluka, Volker, et al. (författare)
  • Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures
  • 2019
  • Ingår i: Nature Nanotechnology. - : Springer Nature. - 1748-3387 .- 1748-3395. ; 14:4, s. 328-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin waves offer intriguing perspectives for computing and signal processing, because their damping can be lower than the ohmic losses in conventional complementary metal-oxide-semiconductor (CMOS) circuits. Magnetic domain walls show considerable potential as magnonic waveguides for on-chip control of the spatial extent and propagation of spin waves. However, low-loss guidance of spin waves with nanoscale wavelengths and around angled tracks remains to be shown. Here, we demonstrate spin wave control using natural anisotropic features of magnetic order in an interlayer exchange-coupled ferromagnetic bilayer. We employ scanning transmission X-ray microscopy to image the generation of spin waves and their propagation across distances exceeding multiples of the wavelength. Spin waves propagate in extended planar geometries as well as along straight or curved one-dimensional domain walls. We observe wavelengths between 1 mu m and 150 nm, with excitation frequencies ranging from 250 MHz to 3 GHz. Our results show routes towards the practical implementation of magnonic waveguides in the form of domain walls in future spin wave logic and computational circuits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy