SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Feng Shasha) "

Sökning: WFRF:(Feng Shasha)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bai, Sai, et al. (författare)
  • Electrophoretic deposited oxide thin films as charge transporting interlayers for solution-processed optoelectronic devices: the case of ZnO nanocrystals
  • 2015
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 5:11, s. 8216-8222
  • Tidskriftsartikel (refereegranskat)abstract
    • A promising fabrication method of electron transporting interlayers for solution-processed optoelectronic devices by electrophoretic deposition (EPD) of colloidal zinc oxide (ZnO) nanocrystals was demonstrated. A low voltage of 3-5 V and a short deposition time of 40 s at room temperature were found to be sufficient to generate dense and uniform ZnO thin films. The EPD ZnO nanocrystal films were applied as ETLs for inverted organic solar cell and polymer light emitting diodes (PLEDs). By optimizing the EPD processing of ZnO nanocrystal electron transporting layers (ETLs), inverted organic solar cells based on [3,4-b]-thiophene/benzodithiophene (PTB7): [6-6]-phenyl-C71-butyric acid methyl ester (PC71BM) and poly(3-hexylthiophene) (P3HT): [6-6]-phenyl-C-61-butyric acid methyl ester (PC61BM) with an average PCE of 8.4% and 4.0% were fabricated. In combination with the PLEDs and flexible devices results, we conclude that the EPD processed ZnOnanocrystal thin films can serve as high quality ETLs for solution-processed optoelectronic devices.
  •  
2.
  •  
3.
  • Sun, Yan, et al. (författare)
  • Hydrogen sulfide upregulates K-ATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats
  • 2015
  • Ingår i: Journal of Molecular Medicine. - : Springer Publishing Company. - 0946-2716 .- 1432-1440. ; 93:4, s. 439-455
  • Tidskriftsartikel (refereegranskat)abstract
    • The study was designed to investigate whether H2S could upregulate expression of K-ATP channels in vascular smooth muscle cells (VSMCs), and by this mechanism enhances vasorelaxation in spontaneously hypertensive rats (SHR). Blood pressure, vascular structure, and vasorelaxation were analyzed. Plasma H2S was detected using polarographic sensor. SUR2B and Kir6.1 expressions were detected in VSMCs of SHR and in A7r5 cells as well as primarily cultured ASMCs using real-time PCR, western blot, immunofluorescence, and confocal imaging. Nuclear translocation of forkhead transcription factors FOXO1 and FOXO3a in ASMCs was detected using laser confocal microscopy, and their binding activity with SUR2B and Kir6.1 promoters was examined by chromatin immunoprecipitation. SHR developed hypertension at 18 weeks. They showed downregulated vascular SUR2B and Kir6.1 expressions in association with a decreased plasma H2S level. H2S donor, however, could upregulate vascular SUR2B and Kir6.1 expressions, causing a left shift of the vasorelaxation curve to pinacidil and lowered tail artery pressure in the SHR. Also, H2S antagonized endothelin-1 (ET-1)-inhibited K-ATP expression in A7r5 cells and cultured ASMCs. Mechanistically, H2S inhibited ET-1-stimulated p-FOXO1 and p-FOXO3a expressions (inactivated forms), but increased their nuclear translocation and the ET-1-inhibited binding of FOXO1 and FOXO3a with Kir6.1 and SUR2B promoters in ASMCs. Hence, H2S promotes vasorelaxation of SHR, at least in part, through upregulating the expression of K-ATP subunits by inhibiting phosphorylation of FOXO1 and FOXO3a, and stimulating FOXO1 and FOXO3a nuclear translocation and their binding activity with SUR2B and Kir6.1 promoters. H2S increased vascular SUR2B and Kir6.1 expression of SHR, promoting vasorelaxation. H2S antagonized ET-1-inhibited K-ATP expression in A7r5 cells and cultured ASMCs. H2S inhibited ET-1-induced FOXO1 and FOXO3a phosphorylation in ASMCs. H2S promoted FOXO1 and FOXO3a nuclear translocation and binding with target gene promoters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy